This is an HTML version of an attachment to the Official Information request 'CIBR funding'.

Project title:  
Centre for Integrated Biowaste Research (CIBR) 
Project leader(s): 
Dr Jacqui Horswell 
Ex-FRSt funding, continues until 2017 
List the capabilities developed and by whom (include students)
CIBR core capabilities 

•  Microbiology 
o  Public and environmental health risk assessments. 
o  Assessments of waste processing technologies for microbial reduction. 
o  Generating environmental fate, transport and effects data for microbes. 
•  Ecotoxicology Team -  Building an ecotoxicological platform that provides the 
science to underpin risk assessments for contaminants found in biowastes:   
o  develop chemical and biological assays to characterise the effects of 
o  provide data to inform the risk assessment and management of emerging 
organic contaminants in biowastes that are being land applied including the 
impacts of mixtures of contaminants; 
o  generate environmental fate, transport and toxicity data to assist the risk 
assessment and management of high priority chemicals. 
•  Environmental life cycle assessment (LCA) 
o  A framework that can help establish the environmental impacts associated 
with a product or service, for example, using it to assess options for 
biosolids reuse. 
•  Cost benefit analysis (CBA) 
o  Systematic process for calculating and comparing benefits and costs of a 
project, for example, using it to assess the economics of biosolids reuse 
•  Soil science  
o  Assessing fit for purpose re-cycling/re-use of biowastes. 
o  How different waste treatment processes affect soil fertility and 
o  Long-term field trials in a forest, glass house pot trials with native plants, 
and laboratory studies. 
o  Use of  biowastes in rehabilitating and restoring degraded soils. 
•  Forest ecology 

o  Impact of biowaste land application on forest biodiversity and functions. 
o  Identifying and manipulating ecological processes for improving forest use 
of biowastes and minimising the environmental risks. 
o  Enhancing carbon sequestration in forests and soils through beneficial use 
of biosolids. 
o  Best management practices for applying biosolids to forest plantations. 
•  Social science and cultural knowledge and approaches 
o  Community engagement methods including stakeholder analysis, 
relationship building, in-depth interview and survey design, collaborative 
planning hui, community dialogue workshop design and facilitation, 
collaborative hui informed by Tikanga. 
o  ‘Fit for purpose’ community-engagement framework to support local 
council decision-making.  
o  Sustainable behaviour change, new curriculum science education for 
engaging teachers, students, whānau and households in addressing wicked 
o  Supporting iwi development, enterprise and waste management. 
Capability development - students 
[Withheld under section 9(2)(a) of the OIA] 
[Withheld under section 9(2)(a) of the OIA] 
[Withheld under section 9(2)(a) of the OIA] 
[Withheld under section 9(2)(a) of the OIA] 
[Withheld under section 9(2)(a) of the OIA] 
[Withheld under section 9(2)(a) of the OIA] 
[Withheld under section 9(2)(a) of the OIA] 
[Withheld under section 9(2)(a) of the OIA] 
[Withheld under section 9(2)(a) of the OIA] 
[Withheld under section 9(2)(a) of the OIA] 
[Withheld under section 9(2)(a) of the OIA] 
[Withheld under section 9(2)(a) of the OIA] 
[Withheld under section 9(2)(a) of the OIA] 
[Withheld under section 9(2)(a) of the OIA] 
[Withheld under section 9(2)(a) of the OIA] 
[Withheld under section 9(2)(a) of the OIA] 
[Withheld under section 9(2)(a) of the OIA] 
[Withheld under section 9(2)(a) of the OIA] 
Completed students 
[Withheld under section 9(2)(a) of the OIA] 
[Withheld under section 9(2)(a) of the OIA] 
[Withheld under section 9(2)(a) of the OIA] 
[Withheld under section 9(2)(a) of the OIA] 
[Withheld under section 9(2)(a) of the OIA] 
[Withheld under section 9(2)(a) of the OIA]

List the external research or grant proposals submitted (include $ value) and any 
research funding obtained that have been made possible as a result of CF investment 
in the project, include proposals awaiting funding decisions:
Grant proposals submitted 

Funding body 
Project title 
[Withheld under 
[Withheld under  [Withheld under  Declined 
9(2)(b)(ii) of the 
9(2)(b)(ii) of the 
9(2)(b)(ii) of the 
[Withheld under 
[Withheld under  [Withheld under  Declined 
9(2)(b)(ii) of the 
9(2)(b)(ii) of the 
9(2)(b)(ii) of the 
[Withheld under 
[Withheld under  [Withheld under  Declined 
9(2)(b)(ii) of the 
9(2)(b)(ii) of the 
9(2)(b)(ii) of the 
List all external research revenue obtained seeded by this CF project:
Co-funding and subcontracting 

Funding type  
Organisation name  
[Withheld under 
[Withheld under section 9(2)(b)(ii) of the OIA]  section 9(2)(b)(ii) of 
the OIA] 
[Withheld under section 9(2)(b)(ii) of the OIA]  [Withheld under 
section 9(2)(b)(ii) of 
the OIA]
Co funding 
[Withheld under section 9(2)(b)(ii) of the OIA]  [Withheld under 
section 9(2)(b)(ii) of 
the OIA]
[Withheld under section 9(2)(b)(ii) of the OIA]  [Withheld under 
section 9(2)(b)(ii) of 
the OIA]

[Withheld under section 9(2)(b)(ii) of the OIA]  [Withheld under 
section 9(2)(b)(ii) of 
the OIA]
[Withheld under section 9(2)(b)(ii) of the OIA]  [Withheld under 
section 9(2)(b)(ii) of 
the OIA]
[Withheld under section 9(2)(b)(ii) of the OIA]  [Withheld under 
section 9(2)(b)(ii) of 
the OIA]
[Withheld under section 9(2)(b)(ii) of the OIA]  [Withheld under 
section 9(2)(b)(ii) of 
the OIA]
[Withheld under section 9(2)(b)(ii) of the OIA]  [Withheld under 
section 9(2)(b)(ii) of 
the OIA]
[Withheld under section 9(2)(b)(ii) of the OIA]  [Withheld under 
section 9(2)(b)(ii) of 
the OIA]
Show commercial benefits from the investment, list any new products or services 
made possible by CF, both actual and potential (be realistic, not far fetched
) and 
estimate revenue, clients and timeframe for achieving this:
[Withheld under section 9(2)(b)(ii) of the OIA] 
How does your research contribute to ESR’s IMPACT/s?
The CIBR programme contributes specifically to Outcome 4 by improving the safer use 
of biowastes.   
The key impact area for outcome 4 is Reducing morbidity and mortality rates from 
contaminated water by:  
Decreasing exposure to hazardous substances and water-borne pathogens, and 
Decreasing environmental contamination from grey water and biowaste: 
CIBR has 
assessed waste processing technologies, such as vermicomposting to improve biowastes 
quality, reduce risks and enhance their reuse as soil fertiliser or amendment.  We have 
characterised chemical and microbial levels in biowaste and found that levels of key 
contaminants of concern are similar to those found overseas.  Environmental fate, 
transport and effects data for priority chemicals and mixtures of these chemicals has 
found that compounds such as triclosan (an antimicrobial used in hand soaps and 
toothpastes) can cause ecotoxicological impacts in the environment. Microbiological 
contaminants in biowastes can be managed by process controls such as anaerobic 
digestion, followed by land treatment site management (e.g. withholding periods).    

Information for national and regional water policy:
 CIBR provides the science that 
underpins the development of national guidelines for sustainable waste re-use (e.g. the 
Organic Waste Guidelines currently under development); provides advice and peer review 
of human health impacts for resource consent applications and district planning, with 
respect to land application of wastes; CIBR team members sit on national and 
international advisory groups, boards and Steering Committees (e.g. Australia/New 
Zealand Biosolids Partnership; NZ Land Treatment Collective; BRANZ). 
List anything else that can demonstrate value from this CF investment:
Science Quality: 

Peer-reviewed journal articles accepted for science 
Masters or doctorate theses 

Published conference proceedings 
Keynote presentations 

Commissioned Reports:   
Number of non peer reviewed published articles 


Executive summary – Three to four sentences giving an overview of your project and 
the results obtained. This will be used for the board report so keep in mind that not 
everyone is an expert in your field.
Three key achievements: 
1.  Manuka: ESR has been working with Lincoln University on a joint project to 
explore the benefits of applying biosolids to manuka plantations.  Biosolids 
are carbon-rich and contain high concentrations of valuable nutrients that are 
effective for the rebuilding of soil that has become degraded from pine 
forestry. NZ native Leptospermum scoparium (manuka) is widely used in 
land restoration projects in New Zealand due to its hardy, tolerant nature. It 
addition, manuka components have economic value through commercial 
production of honey and essential oil-related products. This makes 
establishment of manuka plantations a viable option, particularly if this can 
be achieved on low quality or degraded land.  We have shown that some of 
the negative effects of biosolids and dairy waste addition to soil can be 
mitigated by planting of manuka. In the ESR led part of the project we 
demonstrated that manuka can increase the die-off of waste-borne pathogens 
in soil, this work also led to a successful Pioneer fund project.  Lincoln 
University work showed that manuka can interfere with the nitrogen cycle in 
soil, significantly reducing the evolution of nitrous oxide a potent greenhouse 
gas, and reduce nitrate leaching that poses a threat to groundwater. Results 
indicate that the most effective use of a waste such as biosolids would be 
during establishment of manuka seedlings in degraded soil, rather than being 
continually added as a fertiliser during manuka production.  This new 
knowledge could provide additional economic benefits through commercial 
production of manuka honey and provide a more cost-effective beneficial re-
use of biosolids, and mitigate some of the environmental impacts of waste 
application to land.  
2.  CIBR workshop – ESR organised the second CIBR end-user workshop 
“Advancing resource recovery/reuse from biowastes” in April.  Over 60 
representatives from District and Regional Councils, Biosolids industry and 
other end-users attended. Presentations were made by all parties, including 
an international speaker Mr Tung Nygen from Sydney Water who gave the 
keynote address.  The workshop also included presentations of the latest 
research from the CIBR team and facilitated discussions on the new “Organic 
materials” guidelines, an initiative involving Jacqui Horswell from ESR and 
in partnership with WaterNZ and WasteMINZ. 
3.  Up the Pipe solutions – In this Ministry for the Environment co-funded project 
we went back ‘up the pipe’ to involve school children in research projects to 
better understand and reduce the waste that goes down our drains. ESR led 
the social/cultural component that developed a ‘vehicle’ to engage students 
in science and expand young minds, and generated resources, activities and 

approaches. The resources support behaviour change initiatives by 
encouraging students to be ‘change instigators’ within their whānau.  
Minimising contaminants in biowastes will ultimately support higher rates of 
waste recovery and re-use.  This project has seeded two research proposals 
(outlined above), resulted in a number of popular media articles (e.g. 
Consumer magazine and North and South) and radio interviews (e.g. RNZ 
Morning report)); provided track record for ESR in the area of “Science 
citizenship” and positions us for participation in the “Science in Society 
strategic plan” recently launched by MBIE. We have developed a network of 
key stakeholder relationships in this area including New Zealand Centre for 
Educational Research (NZCER), Enviroschools, EcoStore, and a number of 
4.  Australia and New Zealand Biosolids partnership – Jacqui Horswell 
continues to contribute to the governance of this partnership as a board 
member by directing initiatives within Australasia. This has resulted in 
commercial benefits and raising the profile of the New Zealand collaborators 
including CIBR.  Jacqui and Lisa Langer presented papers on community 
engagement for biosolids decision-making and up the pipe solutions to the 
AWA Biosolids and Source Management National Conference in Melbourne. 
The research was well received and it highlighted that the social and cultural 
research performed by CIBR is well ahead of research within the Australian 
biosolids and source management industries. The Australians are keen to 
receive community ‘buy-in’ and think of communities as requiring education 
rather than seeking sustainable solutions with communities. The conference 
presentations provided an opportunity to signal CIBR expertise in this area 
and hopefully it will mean the Australians will seek more input if community 
discontent arises in the future. 
Project report – 
Make this a stand-alone final report suitable to include in a 
consolidated report to the ESR Board. Include brief background, what you did, what you 
found, conclusions (2-3 pages). This is the opportunity to tell a success story that ESR 
can use in Briefing and other communications.
The CIBR is a virtual centre, combining the expertise of 8 New Zealand research 
institutes, universities and research partners dedicated to developing both the biophysical 
and social science behind appropriate and sustainable beneficial reuse of organic, 
biodegradable waste such as sewage sludge, industrial and agricultural waste; 
kitchen/food waste; and green waste.  Led by ESR, CIBR brings together a multi-
disciplinary team of scientists and researchers from ESR, Scion, Cawthron Institute, 
Landcare Research, Lincoln University, Lowe Environmental Impact, Northcott Research 
Consultants Ltd. and Kukupa Research.   
CIBR science 
The ‘reduce, reuse, recycle’ message from government is a compelling reason for 
communities to look at sustainable options for waste management. Each year, New 

Zealanders send around 3.2 million tonnes of waste to landfill, over a tonne of rubbish 
per household. The organic waste stream comprises more than 62% of the total waste 
stream going to landfill in New Zealand, and at around 700,000 tonnes per year, it is 
growing (Ministry for the Environment, Indicator update, October 2012; INFO 654). The 
burden on the environment and the dollar cost to councils is increasing with resource 
consent applications and the physical act of burying the material. These wastes are 
carbon-rich and generally contain high concentrations of valuable nutrients which, if 
properly treated and/or processed, can have added value through resource recovery.  An 
example is the re-use of organic wastes as a sustainable soil conditioner that has the 
potential to provide valuable physical (e.g. increased water holding capacity, infiltration 
and aeration), biological (e.g. beneficial organisms) and chemical (e.g. essential plant 
nutrients and ability to mitigate chemical contaminants) attributes.  
However, some organic wastes can also contain a range of micro-contaminants such as 
heavy metals, agrichemicals, pathogens, pharmaceuticals and personal care products, thus 
management requires technical guidance and regulation to ensure minimal 
environmental/public health risk and maximum value recovery. 
Despite having science-based regulations or guidelines to facilitate beneficial reuse of 
many organic wastes (e.g. Guidelines for the Safe Application of Biosolids to Land in 
New Zealand, New Zealand Standard for Composts, Soil Conditioners and Mulches 
(NZS 4454:2005)), progress has been slow towards achieving the NZ Waste Strategy 
target of improving the efficiency of resource use and diversion of organic wastes from 
landfill.  In part this is because land application of biowastes, especially the more 
contentious wastes such as sewage sludge, hinges on the outcomes of 
integrating both biophysical and social science; there is also insufficient understanding of 
the risks (perceived and otherwise) with some wastes and no nationwide consistency of 
approach.  Some guidelines are outdated and in need of review as new science is now 
available on quality criteria such as contaminant limits. CIBR provides the science that 
underpins the development of national guidelines such as the new Organic Wastes 
Guideline currently being developed in collaboration with WaterNZ, WasteMINZ, CIBR 
and the Land Treatment Collective. These new guidelines will increase reuse of waste by 
clarifying and streamlining regulatory processes to facilitate greater beneficial re-use of 
organic wastes. 
Working with our two case-study communities (Kaikōura and Mokai), we have 
development a blueprint for successful community engagement, which has guided the 
implementation of biosolids solutions in our case study regions, and  provided a basis for 
regional planning, national guidelines and policy directions. 
Four years of most successful community engagement hui and underlying biophysical 
research for the Kaikōura case study culminated in community recommendations for land 
applications of 1500 tonnes of stockpiled biosolids, Following an invitation by the 
Kaikōura District Council CEO, the CIBR social and cultural team presented the 
Kaikōura case study community engagement report to the Kaikōura District Councillors. 

The councillors unanimously accepted the CIBR report paving the way for the Council to 
implement the research and the community recommended biosolids reuse options. The 
team continue to have dialogue with the Council and Te Rūnanga o Kaikōura to discuss 
plans to spread biosolids on land at the Wastewater Treatment Plant and plant it with 
native species. CIBR will present manuka research to a forth coming rūnanga meeting to 
present knowledge and research capability on the establishment of native species.  
The Mokai case study was somewhat challenging. More complex cultural and local 
government arrangements meant that much of the social research was focused on more 
hypothetical scoping for iwi enterprise around beneficial reuse, rather than actual 
decision support. Highlights included deepening our understanding of’ tapu to noa’ 
cultural management frameworks, a waste survey with Mokai households, and a 
‘willingness to pay’ exercise conducted by [Withheld under section 9(2)(a) of the OIA] in 
the final hui. [Withheld under section 9(2)(a) of the OIA] was involved in a very 
successful extension of the ‘Up the Pipe’ and greywater exercise with Tirohanga Primary 
School, and the Principal [Withheld under section 9(2)(a) of the OIA], helped us develop 
‘Up the Pipe’ resources for primary school level. Based on the survey results, the students 
also designed posters for the Mokai marae to highlight good practices for care of the 
Marae’s newly upgraded septic tank systems. Research into vermicomposting and septic 
tank waste were several highlights of the biophysical science research, but overall there 
was not the same degree of integration between the social and biophysical sciences, and 
science, iwi, council and community partnerships that characterised the success of 
Kaikoura. We would also like to acknowledge the recent passing and enormous support 
of the late [Withheld under section 9(2)(a) of the OIA] who was a keen champion of the 
Mokai work. 
Integration of biophysical, economic, social and cultural science including Life Cycle 
Assessment (LCA) and economic modelling were demonstrated within the two case 
studies. The lessons learned from community engagement in the two case studies and 
past research has led to the development of a community engagement framework for end-
Our long-term field trial has been investigating the sustainability of biosolids land 
application in plantation forests. Biosolids from Nelson have been applied to a radiata 
pine forest on Rabbit Island since 1996. Research has focussed on the effects on tree 
growth, nutrition, soil and the ecosystem environmental quality. This trial is providing 
important information on the sustainability of land treatment of biowastes and its 
economic outcomes, resulting in improved soil fertility and stand productivity (by 35%) 
and increased soil fertility. Long-term biosolids land application has transformed the 
forest site from relatively low to moderately high productivity without causing significant 
adverse effect on the environment.   
Our extensive ecotoxicology platform allows us to characterise range of contaminants 
commonly detected in biowastes such as biosolids.  This is underpinned by chemical 
analysis allowing us to provide biowaste producers and regulators with a comprehensive 

risk assessment of the environmental and public health impacts of waste water and waste 
A key focus of our research is to understand the impacts of mixtures of contaminants in 
biowastes on the environment.  We investigated how the mixtures of copper, zinc, and 
triclosan (antimicrobial used in bodycare products) effects soil microbes and key 
indicator species (e.g. earthworms).   We found that the presence of co-contaminants in 
complex waste materials such as biosolids may combine to produce synergistic or 
additive ecotoxicological impacts upon soil function and health indicators. Further work 
into mixtures using ‘in vitro’ laboratory bioassays (such as zebra fish) has demonstrated 
that the chemicals tested showed toxicity and the potential to interact with other 
chemicals. The research identified high risk chemicals including the disinfectant 
chloroxylenol, the UV filter/sunscreen agent octyl-methoxycinnamate, and the 
antimicrobial chemical triclosan. A series of experiments were conducted using an 
earthworm standard toxicity test with mixtures of triclosan, bisphenol A (BPA, a 
plasticiser) and carbamazepine (a psychiatric drug). On-going research continues to 
assess the potential toxicity of a wider range chemicals commonly found in biosolids, 
particularly the long-term chronic impacts (e.g. effects on reproduction) of individual 
chemicals and mixtures. In the future guidelines should acknowledge and take into 
account the combination of chemicals present in organic wastes and develop new risk 
assessment procedures that incorporate thresholds for mixtures of chemical contaminants. 
We have continued to extend our capability in ‘ecotoxicology; and developed new assays 
to assess oxidative stress and influence on thyroid function that provide new information 
on the potential environmental effects of contaminants and contaminant mixtures 
associated with biowastes and that have led to new international collaboration. 
The CIBR programme has been developing smarter ways of mitigating potential 
environmental impacts of contaminants present in biowastes. Biosolids can be combined 
with wood waste or pyrolysed wood-waste (biochar) to reduce leaching of nitrate. 
Research has shown that most nitrate leaching occurs as a single pulse immediately 
following biosolids addition. Mixing biosolids with sawdust or biochar can adsorb the 
free nitrate present in the biosolids thereby eliminating the pulse of nitrate though to 
groundwater. Using biochar results in the long-term increase of soil carbon, which has 
agronomic and environmental benefits. The nitrogen leaching from biosolids may also be 
reduced by some NZ native plants. Preliminary results indicate that manuka and kanuka 
can reduce both nitrification (which leads to nitrate leaching) and denitrification (which 
leads to nitrogen loss and nitrous oxide emissions). 
The high cadmium (Cd) concentration in biosolids can result in unacceptable plant uptake 
of this toxic heavy metal. CIBR has found that mixing biosolids with other biowastes 
such as lignite can significantly reduce plant Cd-uptake. Biowastes such as compost can 
also reduce Cd-accumulation in plants grown in other Cd-contaminated soils. Most NZ 
soils contain elevated Cd concentrations through the repeated application of 
superphosphate fertiliser. 

The CIBR has worked this year on development of a strategic plan and formed a 
Business Development Working Group to support revenue growth.  A new Business 
Leader has been appointed (Rob Lei from Scion) with broader expertise and linkages to 
the ‘whole’ waste sector to reflect the CIBR’s wider focus from biosolids to all