Opus International Consultants Ltd
Auckland Civil The Westhaven, 100 Beaumont St PO Box 5848, Auckland 1141 New Zealand

TO	
COPY	
FROM	
DATE	$18^{\text {th }}$ June 2013
FILE	1-c0821.00 SUBJ ECT
Manukau Rail Crossing Cycle Routes Economics Update	

f: +6493559585
w: www.opus.co.nz

Opus is currently working on project feasibility assessments of three proposed cycle routes in the Manukau area. The advice used as the basis for the draft project feasibility report (PFR) was that a Benefit Cost Ratio (BCR) of 1 or more would be sufficient to secure funding for further investigation of these projects. However recent advice has been that achieving an Economic Efficiency of "Medium" (a BCR of 2 or more) is required to secure funding for these projects. It has also been highlighted that the actual costs of the bridge component of the three routes is higher than the 2010 estimate assumed in the draft PFR.

This information has necessitated a revised approach to both the costs and benefits claimed on this project. This memo provides an outline of the approach taken in the draft PFR and also the new economic analysis that now takes into account the revised assumptions for this project.

In addition to the Value Engineering and revised Economic Evaluation a scheme Risk Register has been included in Appendix B.

1.1 Background

In 2010 three rail bridges located on the cycle routes being studied were rebuilt by KiwiRail to provide sufficient height clearance for the Auckland Electrification Project (AEP). At this time Opus prepared a funding application for Manukau City Council (MCC) to provide enhanced cycle facilities on the bridges to encourage an increase in cycling in the area.

The three rail bridges have subsequently been constructed, with the enhanced cycle lanes provided. In order to capitalise on the enhanced cycle lanes on the rail crossings, the extension of the cycle route facilities has been assessed at a project feasibility level. The three routes are as follows:

- Route 1 consists of Station Road and St George Street between Portage Road and Kolmar Road in the Papatoetoe area.
- Route 2 includes Browns Road between Roscommon Road and Great South Road.
- Route 3 includes Weymouth Road, Selwyn Road, Station Road between Selwyn Road and Great South Road, and Alfriston Road between Sykes Road and Great South Road.

1.2 Initial Approach

The first iteration of the reporting was undertaken on the assumption that funding for these schemes had already been allocated at the time the bridge components were constructed. As such it was assumed that achieving a BCR of 1 would be sufficient for each route to trigger funding approval for the next stage of works.

This assumption had significant influence on the approach taken to date. Firstly, the approach to benefits was kept consistent with the 2010 Funding Report with no further benefit streams or changes to the key assumptions being sought. Secondly, under the understanding that funding approval was only reliant on achieving a BCR of 1 or more a higher level of service (LOS) was sought than may have been the case if stricter value for money criteria was in place. For example both on road cycle lanes and off road cycle path facilities were recommended in high trip generating land- uses (e.g. schools).

The outcomes of this initial approach were that all three routes had BCRs of over 1 as shown in the following table.

Table 1: Route BCR's from Original Approach

Route	PV of Benefit	PV of Cost	BCR
Route 1 Preferred Option	$\$ 2,009,886$	$\$ 1,098,375$	1.83
Route 2 Preferred Option	$\$ 3,550,537$	$\$ 1,624,223$	2.19
Route 3 Preferred Option	$\$ 6,850,051$	$\$ 1,685,102$	4.07

1.3 Revised Approach

In late April, the Auckland Transport and Opus project teams were advised that BCR's of 2 or more would be required to secure funding and progress to the next stage of investigation. It was also identified that the cost for the construction of the bridge component of the projects was significantly higher than the 2010 estimate which had been used to inform the assumptions in the draft PFR, as a result the BCR's reported to date were under reporting the expected total costs of the projects.

The benefits assumed in the draft PFR were limited to the following:

- Health and Environmental Benefits for Cycling Facility, and
- Safety Benefits.

Working with the updated value for money criteria and updated actual costs for the bridge construction, and considering approaches used on other recent cycling projects our revised economic analysis has also included benefits for:

- Travel Time Benefits, and
- Health and Environmental Benefits for Walking (Route 1 only).

It has also been necessary in some locations to revisit the desired LOS of the route and remove or amend discrete elements of the cycling infrastructure. This has mainly been limited to the removal of off road shared path where an alternative on road cycle lane can be provided.

1.4 Benefits

The revised economic evaluation incorporates a wider range of benefits and practices than was proposed in the draft PFR. The following benefits have been considered for the economic evaluation and the relevant update factors have been used to reflect latest changes in NZTA's Economic Evaluation Manual. Detailed information for procedures undertaken within the economic evaluation methodology is included in Appendix A for reference.

Travel Time Cost Savings

The travel time cost savings have been applied to existing cyclists and predicted new cyclists resulting from the proposed cycle routes. Travel time benefits were applied to both the existing cyclists due to improved cycle facilities and the new cyclists in order to account for varying travel time benefits to new cyclists on the route.

Health and Environmental benefits for Walking facility

The health and environmental benefits have been applied to the new pedestrian trips generated as a result of the proposed new shared path in front of Papatoetoe West School for Route 1.

Health and Environmental Benefits for Cycling Facility

The health and environmental benefits associated with each of the proposed routes have been assessed for the number of additional cycle trips per day along the routes.

Safety Benefit for Cycling Facility

The safety benefits of providing the proposed facilities are assessed for the number of existing and additional cycle trips generated per day along the routes.

The benefits are calculated in 2012 dollar values and are discounted for the period between 2015 to 2044 (30 years of benefit claiming period after completion of construction). Total benefits for each of the proposed routes are summarised in Table 1.

Table 2: Summary of Benefits

Source of Benefit	Total Benefit		
Travel Time Benefits (Cycling)	$\$ 867,603$	$\$ 1,546,714$	$\$ 3,581,320$
Health and Environmental Benefits (Walking and Cycling)	$\$ 2,525,775$	$\$ 2,252,136$	$\$ 4,843,253$
Safety Benefits (Cycling)	$\$ 291,053$	$\$ 274,469$	$\$ 574,643$
Total	$\$ 3,684,432$	$\$ 4,073,319$	$\$ 8,999,216$

1.5 Cost Estimates

The Cost Estimates have been revised to identify cost saving options along the proposed cycle routes, under the conditions that the benefits provided by the proposed walking and cycling improvements are not compromised by the reduction of the level of provision.

The preferred option for Route 2 Browns Road in the draft PFR consists of on road cycle lanes along the entire length of the route and additional off-road cycle path facilities in the vicinity of the school to cater for the school based cycle traffic. Revisiting the option identifies that provision of an additional off-road cycle path would not generate any extra benefit in terms of travel time, health and environment benefits, or safety benefits. The cost associated with the off-road cycle path has therefore been deducted from the initial cost estimation.

Additional maintenance costs, above existing maintenance costs, have been calculated based on the assumption of full thermoplastic green paint rehabilitation every seven years.

Table 3 summarises the revised cost estimation of new cycle facility improvements for each of the routes and the NPV of total expenditure to date provided by Auckland Transport. A summary of expenditures of each cycle route is included in Appendix B.

Table 3: Summary of Costs

Cost Items	Route 1	Route 2	Route 3
Facilities after cost saving review	Retain on road cycle lanes and shared path around school	Retain on road cycle lanes and remove cycle path around school	Retain on road cycle lanes and cycle path around school
Revised Cycleway Cost (Maintenance Cost)	$\$ 540,000$ $(\$ 416,250)$	$\$ 1,116,000$ $(\$ 544,813)$	$\$ 1,380,000$ $(\$ 1,545,000)$
NPV Revised Cycleway Cost (NPV Maintenance Cost)	$\$ 471,957$ $(\$ 108,737)$	$\$ 975,377$ $(\$ 142,322)$	$\$ 1,206,112$ $(\$ 403,602)$
Total expenditure to date	$\$ 858,621$	$\mathbf{\$ 9 2 5 , 0 8 2}$	$\$ 727,783$
NPV cost including IA Grant	$\mathbf{\$ 1 , 4 3 9 , 3 1 5}$	$\mathbf{\$ 2 , 0 4 2 , 7 8 1}$	$\$ \mathbf{\$ 2 , 3 3 7 , 4 9 6}$

Further consideration should be given towards ways of improving the LOS of cycle facilities around school areas at the Scheme Assessment phase of this project.

1.6 Benefit Cost Ratio

The revised benefit cost ratio has been calculated based on the revised benefits of the cycle routes, revised cycleway cost, and the NPV of total expenditure to date. The BCRs for the preferred option of each route are summarised in Table 4 below.

Table 4: Benefit Cost Ratios

Items	Route 1	Route 2	Route 3
NPV Benefits	$\$ 3,684,432$	$\$ 4,073,319$	$\$ 8,999,216$
NPV cost including IA Grant	$\$ 1,439,315$	$\$ 2,042,781$	$\$ 2,337,496$
Revised BCR	$\mathbf{2 . 6}$	$\mathbf{2 . 0}$	$\mathbf{3 . 8}$

1.7 Sensitivity Analysis

Opus has undertaken sensitivity testing on the economic evaluation to develop a better appreciation as to the BCR's sensitivity to changes in cost and variable factors and as to the likely range of BCR values. Table 5 outlines the results of a sensitivity analysis of the Benefit Cost Ratio for the three cycleway routes.

Table 5: Sensitivity Analysis of Benefit Cost Ratios

Items	Route 1	Route 2	Route 3
50\% Cost Increase	1.9	1.4	2.5
50\% Cost Reduction	3.1	2.6	5.2
50\% Increase in Cycle Demand	3.7	3.0	5.8
0\% General traffic growth	1.9	1.4	2.8
Reduced Discounting Rate from 8\% to 6\%	3.3	2.5	4.9

The sensitivity analysis items that are seen to increase the BCR show the Economic efficiency for Route 1 and Route 2 remaining at Medium efficiency. Route 3 is seen to increase in Economic Efficiency from Medium to High for 3 sensitivity tests.

The sensitivity analysis items that are seen to reduce the BCR will still achieve value for money, with BCR values greater than 1. However, they would reduce the Economic Efficiency from Medium to Low for Route 1 and Route 2. Route 3 remains at Medium efficiency.

1.8 Next Steps

Once the results of the value engineering exercise have been reviewed and approved by Auckland Transport, an amended draft PFR report including revised information on benefit cost ratio, option assessment and other relevant sections will be issued to Auckland Transport at a later agreed date.

Appendix A:
Economic Evaluation

Economic Evaluation Manual Vol 1

Route 1 Staion Ra/ St George St		
Pretered Option		
	1/07/2012	
Constucion Period	$1{ }^{1}$	Monts
Benefit peiod		
Construcioo Start	10012014	

Route 2 Erowns Rd		
Preferred Oppion		
	${ }_{2012}$	
Construction Period		Morths
Benefitiperiod	\%31.5	
Construction Start	10112014	

St George Street

SP11 Walking and cycling facilities continued
Worksheet 7 - Cycle demand
2012

	New and existing cyclists			
	Buffers (km)	<0.4	0.4 to <0.8	0.8 to ≤ 1.6
1	Area (km^{2})	1.06	1.78	5.81
2	Density per square kilometre	2872	3389	3367
3	Population in each buffer (3) $=(1) \times(2)$	3044	6032	19562
4	Total population in all buffers (Sum of (3))		28639	
5	Commute share (single value for all)	0.60\%		
6	Likelihood of new cyclist multiplier	1.04	0.54	0.21
7	Row (7) $=(3) \times(6)$	3166	3258	4108
8	Sum of row (7)	10532		
9	Cyclist rate (9) $=((5) \times 0.96)+0.32 \%$	0.90\%		
	Annual Traffic Growth (Base Year to Forecast)			
10	Total existing daily cyclists (10) $=(4) \times(9)$	257		
11	Total new daily cyclists (11) $=\mathbf{(8)} \times(\mathbf{9})$	94		
	Likelihood Scale Factor	100\%		
	Existing Cylists	257		
	Factored new daily cyclists	94		
	New and existing pedestrians			
	Existing Pedestrians			
	New Daily Pedestrians			

The NZ Transport Agency's Economic evaluation manual (volume 1)
First edition, Amendment 0
Effective from Jan 2010

Browns Rd

SP11 Walking and cycling facilities continued

Worksheet 7 - Cycle demand

2012

	New and existing cyclists			
	Buffers (km)	<0.4	0.4 to <0.8	0.8 to ≤ 1.6
1	Area (km^{2})	1.79	2.49	6.9
2	Density per square kilometre	2241	2480	2301
3	Population in each buffer (3) = (1) $\times(\mathbf{2})$	4011	6175	15877
4	Total population in all buffers (Sum of (3))		26063	
5	Commute share (single value for all)		0.60\%	
6	Likelihood of new cyclist multiplier	1.04	0.54	0.21
7	Row (7) $=(3) \times(6)$	4172	3335	3334
8	Sum of row (7)		10841	
9	Cyclist rate (9) $=(\mathbf{(5)} \times 0.96)+0.32 \%$		0.90\%	
	Annual Traffic Growth (Base Year to Forecast)			
10	Total existing daily cyclists (10) $=\mathbf{(4)} \times(\mathbf{9})$		234	
11	Total new daily cyclists (11) $=\mathbf{(8)} \times \mathbf{(9)}$		97	
	Likelihood Scale Factor		100\%	
	Existing Cylists		234	
	Factored new daily cyclists		97	
	\square			

New and existing pedestrians

Existing Pedestrians
New Daily Pedestrians

Weymouth Rd

SP11 Walking and cycling facilities continued

Worksheet 7 - Cycle demand

2012

	New and existing cyclists			
	Buffers (km)	<0.4	0.4 to <0.8	0.8 to ≤ 1.6
1	Area (km^{2})	2.46	3.17	7.69
2	Density per square kilometre	2749	2806	2990
3	Population in each buffer (3) = (1) \times (2)	6763	8895	22993
4	Total population in all buffers (Sum of (3))		38651	
5	Commute share (single value for all)	0.60\%		
6	Likelihood of new cyclist multiplier	1.04	0.54	0.21
7	Row (7) $=(3) \times(6)$	7033	4803	4829
8	Sum of row (7)		16665	
9	Cyclist rate (9) $=((5) \times 0.96)+0.32 \%$		0.90\%	
	Annual Traffic Growth (Base Year to Forecast)			
10	Total existing daily cyclists (10) = (4) $\times(9)$	346		
11	Total new daily cyclists (11) $=\mathbf{(8)} \times(9)$		149	
	Likelihood Scale Factor		100\%	
	Existing Cylists		346	
	Factored new daily cyclists		149	

New and existing pedestrians

Existing Pedestrians
New Daily Pedestrians

St George St
Pedestrian CountsSchool Name
Papatoetoe Westnumber of student760
\% of Pedestrian (arrival) 30.0\%
\% of Pedestrian (departure) 30.0\%
Total daily Pedestrian Trips 456
proportion of Pedestrian using the propose route 50\%
Total daily Pedestrian Trips using the propose route 228
sum 228
Assumed that Student Pedestrian is about 50\% of all pedestrian Therefore, all pedestrian = 456
Assumed that 10\% of all pedestrian are new
Therefore, new pedestrian = 46

St George St
SP11 Walking and cycling facilities continued

Worksheet 4 - Travel time cost savings (Cycle) 2012 Existing Users 2012 New Users

Browns Rd

SP11 Walking and cycling facilities continued

Worksheet 4 - Travel time cost savings (Cycle)
2012 Existing Users
2012 New Users

Weymouth
SP11 Walking and cycling facilities continued

SP11 Walking and cycling facilities continued

Worksheet 5 - Benefits for walking and cycling facilities

Health and environment benefits for cycling facility
Mode growth rate (per annum)
3 Health and environment benefits for cycle lanes, cycleways or increased road shoulder w dths
Benefit $=$ number of add t onal cycle trips/day \times length of new facility in $\mathrm{km} \times 365 \times \$ 1.40$
L

4 Health and environment benefits from improvements at hazardous sites
(provision of overbridges, underpasses, br dge w dening or intersection improvements for cyclists)
Benefit $=$ number of add t onal cycle trips/day $\times 365 \times \$ 4.20$

Safety benefits for cycling facility
Safety benef t for cycle lanes, cycleways or increased road shoulder widths in the absence of a specif c accident analysis

Benefit $=$ number of new and existing cycle trips/day \times length of new facil ty in $\mathrm{km} \times 365 \times \$ 0.05$
L
6 Safety benef t from improvements at hazardous s tes in the absence of a specific acc dent analysis
(provision of overbridges, underpasses, br dge w dening or intersection improvements for cyclists)
Benefit $=$ number of new and existing cycle trips/day $\times 365 \times \$ 0.15$
2012 NTD $351 \times 365 \times \$ 0.15 \times$ DF $\quad 1.00 \quad 19217$ (f)

[^0]Browns Rd

SP11 Walking and cycling facilities continued

Worksheet 5 - Benefits for walking and cycling facilities

Health and environment benefits for cycling facility

Mode growth rate (per annum)
3 Health and environment benefits for cycle lanes, cycleways or increased road shoulder widths
Benefit $=$ number of additional cycle trips/day \times length of new facility in $\mathrm{km} \times 365 \times \$ 1.40$

Health and environment benefits from improvements at hazardous s tes
(provis on of overbr dges, underpasses, bridge \mathbf{w} dening or intersect on improvements for cyclists)
Benefit $=$ number of additional cycle trips/day $\times 365 \times \$ 4.20$
2012 NTD $97 \times 365 \times \$ 4.20 \times$ DF $\quad 1.00 \quad 148701$ (d)

Safety benefits for cycling facility

5 Safety benef t for cycle lanes, cycleways or increased road shoulder $w d$ ths in the absence of a specific acc dent analysis
Benefit $=$ number of new and existing cycle trips/day \times length of new facility in $\mathrm{km} \times 365 \times \$ 0.05$
L
6 Safety benef t from improvements at hazardous sites in the absence of a specific accident analysis
(provis on of overbr dges, underpasses, bridge w dening or intersect on improvements for cyclists)
Benefit $=$ number of new and existing cycle trips/day $\times 365 \times \$ 0.15$
2012 NTD $331 \times 365 \times \$ 0.15 \times$ DF $\quad 1.00 \quad 18122$ (f)

[^1]Weymouth Rd

SP11 Walking and cycling facilities continued

Worksheet 5 - Benefits for walking and cycling facilities

		Health and environment benefits for walking facility						
		Mode growth rate (per annum)					3.00\%	
1		Health and environment benefits for footpaths and other pedestrian facil ties						
		Benefit $=$ number of additional pedestrians/day \times length of new facility in $\mathrm{km} \times 365 \times \$ 2.70$						
	2012	L	x NPD	$\times 365 \times \$ 2.70 \times$ DF	1.00	$=\$$	0	(a)
2		Health and environment benefits from improvements at hazardous s tes						
		(provis on of overbr dges, underpasses, bridge \mathbf{w} dening or intersect on improvements for pedestrians) Benefit $=$ number of additional pedestrians/day $\times 365 \times \$ 2.70$						
		2012	NPD	$\times 365 \times \$ 2.70 \times$ DF	1.00	$=\$$	0	(b)
	Transfer total (a) or (b) to D on worksheet 1.							

Health and environment benefits for cycling facility

Mode growth rate (per annum)
3 Health and environment benefits for cycle lanes, cycleways or increased road shoulder widths
Benefit $=$ number of additional cycle trips/day \times length of new facility in $\mathrm{km} \times 365 \times \$ 1.40$
L $4.20 \times$ NTD $149 \times 365 \times \$ 1.40 \times$ DF
1.00
319784

4 Health and environment benefits from improvements at hazardous stes
(provis on of overbr dges, underpasses, bridge \mathbf{w} dening or intersect on improvements for cyclists)
Benefit $=$ number of additional cycle trips/day $\times 365 \times \$ 4.20$

Transfer total (c) or (d) to D on worksheet 1.

Safety benefits for cycling facility

5 Safety benef t for cycle lanes, cycleways or increased road shoulder $w d$ ths in the absence of a specific acc dent analysis
Benefit $=$ number of new and existing cycle trips/day \times length of new facility in $\mathrm{km} \times 365 \times \$ 0.05$

L	4.20	$\times \mathrm{NSD}$	$495 \times 365 \times \$ 0.05 \times$ DF	1.00	37942 (e)

6 Safety benef t from improvements at hazardous sites in the absence of a specific accident analysis
(provis on of overbr dges, underpasses, bridge w dening or intersect on improvements for cyclists)
Benefit $=$ number of new and existing cycle trips/day $\times 365 \times \$ 0.15$

[^2]
Evaluation Assumptions

Assumptions

Description	Value
Discount Rate	8%
Minimum Commuter Costs	$\$ 3.40$
GST	15%
Growth Rate	3.0%

Travel Time Costs - EEM Vol. 2 SP11 Worksheet 4 Table 1

Road Type	Travel Time Cost $\$ / h r(2008)$
Urban Arterial	19.36
Urban Other	19.31
Rural Strategic	27.67
Rural Other	27.04

Benefit Factors for Cycle Facilities - EEM Vol. 2 SP11 Worksheet 4 Table 2

Type of Cycle Facility	Relative Attractive.
On-street with parking, no marked cycle lane On-street with parking, marked cycle lane On-street without parking, marked cycle lane Off-street cycle path	1.0

New Facility Benefits - EEM Vol. 2 Table 8.2 \& 8.3

Benefit	New Ped	New Cycle
	Facility	Facility
	$\$ /$ ped km	$\$ / \mathrm{cyc} \mathrm{km}$
Health	2.6	1.3
Safety	0	0.05
Road Traffic Reduction	0.1	0.1

Benefit Update Factors - EEM Vol. 1 A12.2

Benefit	Update Factor
Travel Time	1.37
VOC	1.06
Accident Cost Savings	1.2
Comfort Benefits	1.39
Driver Frustration	1.37
Passenger Transport User Benefits	1.1
Walking and Cycling	1.1
Travel Behaviour Change Benefits	1.1

Appendix B:
Risk Register

[^0]: The NZ Transport Agency's Econom c evaluation manual (volume 1)
 First edition, Amendment 0
 Effective from Jan 2010

[^1]: The NZ Transport Agency's Econom c evaluation manual (volume 1)
 First edition, Amendment 0
 Effective from Jan 2010

[^2]: The NZ Transport Agency's Econom c evaluation manual (volume 1)
 First edition, Amendment 0
 Effective from Jan 2010

