

Alexandra Service Centre, 1 Dunorling Street, Alexandra

DETAILED SEISMIC ASSESSMENT REPORT

Client Name: Central Otago District Council

BMC Reference: 1708-2227a

Date Issued: 8/08/2023

Quality Statement and Document Control

This Detailed Seismic Assessment (DSA) report has been prepared for Central Otago District Council by Batchelar McDougall Consulting Ltd. No liability is accepted by this company or any employee or sub-consultant of this company with respect to its use by any other parties.

This disclaimer shall apply notwithstanding that the documents may be made available to other persons for an application for permission or approval to fulfil a legal requirement.

Issue Register:

Revision	Date	Description			
	8/08/2023 Issue to client				
		Prepared by	Reviewed by	Approved by	
	Name	Warren Holt	Graham McDougall	Graham McDougall	
A	Signature	BEng (Hons), CMEngNZ, CPEng, IntPE(NZ), MIStructE(UK), CEng(UK)	S. D. M. Douga BE, CMEngNZ, CPEng, IntPE(NZ)	G. L. M. Dougs Director	

Document version code: 403.003-V1.0-DSA

Revision History:

Rev. No	Date	Issue Description	Prepared by	Reviewed by
A	8/08/2023	Issue to client	WH	GRM

BMC Contents:

1	E>	Executive Summary				
2	So	Scope of Our Engagement				
3	St	Statutory Requirements				
;	3.1	Building Act 2004 (Incorporating the Building (Earthquake Prone Building) Amendment Act 2016) 6				
	3.2	Building Code9				
4	Se	eismic Resistance Standards 10				
5	Вι	uilding Description 11				
:	5.1	General Overview				
	5.2	Gravity Load Resisting System 13				
	5.3	Lateral Load Resisting System 14				
:	5.4	Foundation system 14				
:	5.5	Potential 'Severe Structural Weaknesses' 15				
6	Вι	uilding Observations				
	6.1	BMC Building Inspection				
7	Ge	eotechnical Considerations				
	7.1	Geotechnical Investigation				
8	Q	uantitative Seismic Assessment				
	8.1	Seismic Design Loads				
	8.2	Material Properties				
	8.3	Modelling Approach and Assumptions 22				
	8.4	Overall Building Performance				
	8.5	Quantitative Results Summary				
9	St	rengthening Strategy				
10		Seismic Restraint of Non-Structural Items				
11		Continued Occupancy Recommendations				
12		Recommendations				
Ap	pen	dix A – Technical Summary SheetA				
Ap	Appendix B – Summary Calculations / Assessment OutputsB					
Ap	Appendix C – Geotechnical Desktop ReportC					

1 Executive Summary

This report covers a Detailed Seismic Assessment of the building at Alexandra Service Centre, 1 Dunorling Street, Alexandra. The building consists of two main elements the William Fraser Block and the Kelman Street Block. The assessment is required for the William Fraser Building only. It is single storey in height having a U-shaped footprint. It comprises a timber trussed stepped duo pitch roof structure supported by internal and external load bearing timber framed walls on RC foundations with a timber cladding to the window heights and a brick masonry veneer under the sill level.

Documentation available to BMC for the purposes of this assessment are summarised in Section 2. This assessment is based on these documents and site visit observations.

For the purposes of this evaluation, the above described building has been assessed as a single monolithic structure of Importance Level 4.

The assessment has been carried out in accordance with the requirements for a Detailed Seismic Assessment as defined in "*The Seismic Assessment of Existing Buildings, Technical Guidelines for Engineering Assessments*" issued in July 2017 by MBIE et al.

Loading Direction	%NBS (IL 4)	Alpha Rating
NW-SE (Longitudinal)	100%	Seismic Grade A
SW-NE (Transverse)	100%	Seismic Grade A

Table 1: Seismic ratings for both loading directions

The building is considered to have a capacity of 100%NBS of New Building Standard (IL4) which gives and overall Seismic Grade A for the building.

BMC consider the Critical Structural Weakness to be: Not Applicable to this building.

As the building has/ does not have structural components with a seismic capacity of less than 33%NBS, BMC consider it to (not) meet the first criteria in the definition of an earthquake-prone building, as set out in Clause 133AB of the Building (Earthquake-prone Buildings) Amendment Act 2016. This assessment can be used by the relevant Territorial Authority for the purpose of deciding whether the building is earthquake-prone or not, in accordance with legislation.

A Desktop Geotechnical Report was undertaken by Geosolve Limited Reference 230125 dated March 2023 which determined the assessment to be Structurally Dominated. This has been utilised when determining the building's seismic rating.

A concept strengthening design has not been carried out as part of this assessment, but this would likely consist of the: -

• Not Applicable to this building.

2 Scope of Our Engagement

BMC have been engaged by Central Otago District Council to undertake a Detailed Seismic Assessment (DSA) of the buildings at Alexandra Service Centre, 1 Dunorling Street, Alexandra. The purpose of this report is to ascertain the anticipated seismic performance of the structures (as an Importance level4 (IL4) building) compared to current design standards and comment on a likely concept strengthening strategy, (if required).

Please note that BMC have previously completed a remodelled wall/structure layout for the building, but this was as an Importance Level (IL2). IL4 seismic design loading is significantly higher than IL2 and thus a more sophisticated assessment approach along with site specific geotechnical input was required as part of this assessment.

The seismic assessment and reporting has been undertaken in accordance with the qualitative and quantitative procedures detailed in "*The Seismic Assessment of Existing Buildings, Technical Guidelines for Engineering Assessments*" (SEAB) issued in July 2017 by the Ministry of Business, Innovation and Employment (MBIE), the Earthquake Commission (EQC), the New Zealand Society for Earthquake Engineering (NZSEE), the Structural Engineering Society of New Zealand (SESOC) and the New Zealand Geotechnical Society (NZGS). This suite of documents, previously known as 'The Red Book' is henceforth referred to in this report as "*The MBIE Technical Guidelines*". This report meets the reporting requirements of a 'Detailed Seismic Assessment' as described in Sections A8 and C1.10 of these guidelines.

This structural assessment includes: -

- Review of existing building plans and reports (including previous BMC calculations).
- Undertaking additional interior and exterior visual inspections of exposed elements on-site.
- Consideration of the site-specific geotechnical engineer's report commissioned as part of this assessment.
- Undertake detailed calculations on all primary seismic elements and parts, and
- Comment on a likely general strengthening strategy to either >34% or >67%NBS (IL4), as required.

This structural assessment is based on information provided to us, which includes documentation listed in Section 2 of this DSA. The assessment is also based on the visual evidence & indications present at the time of inspection, along with limited invasive investigations described in Section 6 of this report. The findings of this report may therefore be subject to revision pending more detailed/invasive investigations or deterioration of elements from future earthquakes or ground settlement. This report does not address any hidden or latent defects that may have been incorporated in the original design and construction.

This assessment is restricted to structural aspects only. Waterproofing elements, electrical and mechanical equipment, fire protection and safety systems, service connections, water supplies and sanitary fittings have not been reviewed. Architectural elements (except those with a structural function or affecting the structural system) have not generally been reviewed.

The scope of this evaluation is limited to the assessment of the potential performance of the building in an earthquake only. No assessment has been made of other load cases, such as wind, snow and gravity. The assessment is being undertaken to determine if the building meets any of the criteria of an Earthquake Prone building as identified in the Earthquake Prone Building (EPB) provisions of the Building Act (2004), incorporating the Building (Earthquake Prone Building) Amendment Act 2016.

BMC has not made any Geotechnical assessment of the soils on the site, however, Geosolve were engaged to provide site specific information. Refer to Section 7 of this report for recommendations and Geotechnical reports that we have obtained.

With respect to any strengthening works (if required) this is a scoping document only and under no circumstances shall recommendations and/or sketches included in this report be used for construction. They are for feasibility/pricing purposes only.

Our professional services are performed using a degree of care and skill normally exercised, under similar circumstances, by reputable consultants practicing in this field at this time. No other warranty, expressed or implied, is made as to the professional advice presented in this report.

This Detailed Seismic Assessment (DSA) report has been prepared by Batchelar McDougall Consulting Ltd for the sole use of our client Central Otago District Council, for the particular brief and on the terms and conditions agreed with our client. It may not be used or relied on (in whole or part) by anyone else, or for any other purpose or in any other contexts.

This disclaimer of liability shall apply notwithstanding that this DSA may be made available to other persons for an application for permission or approval to fulfil a legal requirement.

It may however be used by the Territorial Authority in the course of defining the buildings classification in accordance with the Building Act 2004 incorporating the Building (Earthquake-prone Buildings) Amendment Act 2016.

Information Used for the Assessment

Documentation received and or issued by us that we consider relevant to this report includes: -

Description	Revision	Issue Date
Architectural & Structural Drawings of G.O.A.B. Alexandra Job Ref: 7/286/2 Sheets 78No. dated Dec 1978 by: Ministry Of Works.		12/1978
Architectural Drawings of Alterations to William Fraser Building Job Ref: 3137/w7 Sheets (13No.) dated Apr 1993		
by: Salmond Anderson Heath Architects.		04/1993
Structural Drawings of Refurbishment of William Fraser Building Job Ref: 14455 Sheets S1-2 dated Jun 1993		04/1993
by: Duffill Watts & King Ltd		
Architectural & Structural Drawings of Extension to William Fraser Building, Alexandra Job Ref: 7/286/19 Sheets (25No.) dated Dec 1986 by: Ministry Of Works.		06/1986
There were no previous seismic assessment reports available for the building elements other than the checks provided as part of the 2019-2023 alteration works BMC Ref 1708-2227		2019-2023

Table 2: Summary of documentation reviewed for this assessment

3 Statutory Requirements

This section contains a brief summary of the requirements of the various statutes and authorities that control activities in relation to the structural aspects of buildings subject to earthquake effects at present.

3.1 Building Act 2004 (Incorporating the Building (Earthquake Prone Building) Amendment Act 2016)

Several sections of the Building Act are relevant when considering earthquake structural requirements:

Section 112 - Alterations

This section requires that an existing building complies with the relevant sections of the Building Code to at least the extent that it did prior to the alteration. This effectively means that a building cannot be weakened as a result of an alteration (including partial demolition).

For an Earthquake Prone Building (EPB) (a building or part of a building subject to an EPB notice) Section 133AT supersedes Section 112. Under this section:

- Alterations to Earthquake-prone buildings may be allowed even if after those alterations the building will not comply with the provisions of the Building Code that relate to means of escape from fire and disabled access. The Territorial Authority must be satisfied that the proposed alteration would contribute towards making the building no longer earthquake-prone and that carrying out other upgrades would be unduly onerous on the owner.
- The Territorial Authority will be able to require the owner to carry out strengthening works in addition to other alterations where the alterations are 'substantial alterations'. The definition of 'substantial alterations' is work that is valued at more than 25% of the building's rateable value, in accordance with Building Regulations.

Section 115 – Change of Use

This section requires that the territorial authority is satisfied that the building with a new use complies with the relevant sections of the Building Code 'as near as is reasonably practicable'.

This is typically interpreted by territorial authorities as being as near as is reasonably practicable to 100% of the strength of an equivalent new building.

Section 133 – Earthquake-prone Building Policy

This section covers the specific provisions relating to earthquake-prone buildings and includes:

- Exclusions from the policy,
- Definitions of earthquake-prone buildings, earthquake ratings, seismic risk and priority buildings,
- Territorial Authority and Owner requirements for identifying, assessing and strengthening earthquake-prone buildings,
- Issuing and display of EPB notices,
- Timeframes for reporting and remedying earthquake-prone buildings.

It is the responsibility of the Territorial Authority, not the author of engineering assessments, to declare a building as being earthquake-prone.

BMC Definition of 'earthquake-prone'

The Building (Earthquake Prone Building) Amendment Act 2016 defines an 'earthquake-prone building' by:

- Clarifying that an earthquake-prone building can be one that poses a risk to people on adjoining
 properties and not just those within the building itself.
- Excluding from the definition of earthquake-prone building certain residential housing, farm buildings, retaining walls, wharves, bridges, tunnels and monuments.
- Including in the definition of earthquake-prone building: hostels, boarding houses and residential buildings that are more than two storeys and contains three or more household units.

Seismic Risk

New Zealand is divided into 'seismic risk' zones as shown in Figure 1. Three different categories as defined by the seismic hazard factor (Z) in the New Zealand Loadings Code (NZS 1170.5:2004) are referenced by the Building (Earthquake Prone Building) Amendment Act 2016:

- High seismic risk Z greater than or equal to 0.30
- Medium seismic risk Z between 0.15 and 0.30
- Low seismic risk Z lower than 0.15

The seismic risk relates to timeframes for strengthening and identification of potentially earthquake-prone buildings. The building at 1 Dunorling Street, Alexandra is in a Medium seismic risk zone.

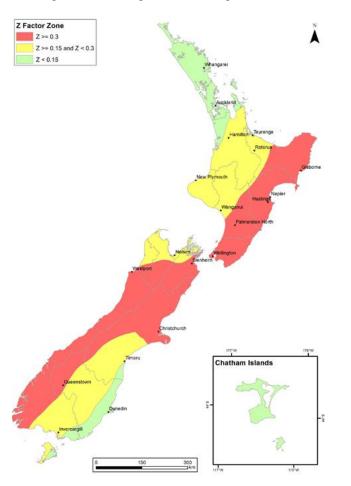


Figure 1: Three seismic risk areas in map format (map produced by GNS Science)

Clause A3 of the Building Act describes the IL of buildings that relate to the consequence of failure. All normal buildings are IL2. The CODC have requested that this building be assessed as IL4 which means it must be capable of being operative immediately after an earthquake or other significant event. Design and assessment of IL4 buildings are much higher than IL2 loads. Of course, other factors that relate to the building serviceability are appropriate to consider e.g. power. Water supply, sewerage disposal. Flooding etc.) but these are not dealt with as part of this assessment.

Priority Buildings

Priority buildings are defined as buildings that:

- Are generally used for health or emergency services or used as educational facilities,
- Contain unreinforced masonry that could fall on to busy thoroughfares in an earthquake such as parapets,
- The territorial Authority have identified as having the potential to impede strategic transport routes after an earthquake.

Priority buildings have shorter timeframes for identification and strengthening of earthquake-prone buildings.

BMC consider the building at 1 Dunorling Street, Alexandra is likely to be classified as a priority building by Central Otago District Council, in accordance with Section 133AE of the Building (Earthquake-prone Buildings) Amendment Act 2016.

Timeframes for Identifying and Strengthening Earthquake-prone Buildings

The Building (Earthquake Prone Building) Amendment Act 2016 contains maximum timeframes for Territorial Authorities to assess and identify potentially earthquake-prone buildings as outlined below.

Following identification of a building as being potentially earthquake-prone by the Territorial Authorities, building owners are required to provide an engineering assessment of the building within twelve months. Upon receipt of the engineering assessment the Territorial Authority decides whether the building should be declared earthquake-prone. The Territorial Authority must issue an earthquake-prone building notice when it determines that a building or part of a building is earthquake-prone.

The Amendment Act contains maximum timeframes for strengthening earthquake-prone buildings after notice has been issued by the Territorial Authority as outlined in Table 3:

Seismic Risk	Building	Timeframe for Assessment (from 1 st July 2017)	Timeframe for Remediation of EPB (from date of EPB Notice Issue)
Low (Z < 0.15)	All	15 years	35 years
Modium $(0.15 < 7 < 0.2)$	Priority	5 years	12.5 years
Medium (0.15 ≤ Z < 0.3)	Other	10 years	25 years
High (7 > 0.2)	Priority	2.5 years	7.5 years
High (Z ≥ 0.3)	Other	5 years	15 years

Table 3: Time frames for the identification and remediation of earthquake-prone buildings

If the assessment determines that elements of the building have a seismic rating of less than 34% NBS(IL4), the Territorial Authority can either declare it to be earthquake prone and issue an earthquake-prone building notice or can downrate the Importance Level (and therefore change its intended use). The owner will have 12.5 years from the date of the notice to increase the seismic rating of the building to above 34% NBS by undertaking structural strengthening work.

3.2 Building Code

The Building Code outlines performance standards for buildings and the Building Act requires that all new buildings comply with this code. Compliance Documents published by MBIE and its predecessor, The Department of Building and Housing, can be used to demonstrate compliance with the Building Code.

BMC 4 Seismic Resistance Standards

For this assessment, the building's Ultimate Limit State earthquake resistance is compared with the current New Zealand Building Code requirements for a new building constructed on the site. This is expressed as a percentage of New Building Standard (%NBS). The new building standard load requirements have been determined in accordance with the current earthquake loading standard NZS 1170.5:2004 for an IL4 structure.

The likely ultimate capacity of this building has been derived in accordance with *The MBIE Technical Guidelines* which sets out the types of analysis that can be used.

The New Zealand Society for Earthquake Engineering has proposed a way for classifying earthquake risk for existing buildings in terms of %NBS and this is shown in Table 4.

Description	Grade	Risk	%NBS	Existing Building Structural	Improvement of St	ructural Performance
				Performance	Legal Requirement	NZSEE Recommendation
Low Risk Building	A or B	Low	Above 67	Acceptable (improvement may be desirable)	The Building Act sets no required level of structural improvement (unless sharps is use)	100%NBS desirable. Improvement should achieve at least 67%NBS
Moderate Risk Building	B or C	Moderate	34 to 66	(improvement decide. Improvement is		Not recommended. Acceptable only in exceptional circumstances
Risk Building	D or E	High	33 or lower	Unacceptable (Improvement required under Act)	Unacceptable	Unacceptable

Table 4: NZSEE Risk classifications extracted from Table 2.2 of the MBIE 2006 AISPBE Guidelines

Table A3.1 of *The MBIE Technical Guidelines* is shown in Table 5. It compares the %NBS to the relative risk of the building failing in a seismic event to that of a new building of the same importance level.

Percentage of New Building Standard (%NBS)	Alpha Rating	Approx. risk relative to a new building.	Life-Safety Risk Description
>100	A+	Less than or comparable to	Low Risk
80-100	A	1-2 times greater	Low Risk
67-80	В	2-5 times greater	Low to Medium Risk
33-67	С	5-10 times greater	Medium Risk
20-33	D	10-25 times greater	High Risk
<20	E	25 times greater	Very High Risk

Table 5: Table A3.1 of the MBIE Seismic Assessment of Existing building guidelines, %NBS compared to relative risk of failure

The target %NBS for the IL4 assessment of the William Fraser Block at the 1 Dunorling Street building is 100%NBS(IL4).

5 Building Description

5.1 General Overview

The building consists of two main elements the William Fraser Block and the Kelman Street Block. The assessment is required for the William Fraser Building only. It is single storey in height having a U-shaped footprint. It comprises a timber trussed stepped duo pitch roof structure supported by internal and external load bearing timber framed walls on RC foundations with a timber cladding to the window heights and a brick masonry veneer under the sill level. The building does not comprise a shared structural form on elements with adjacent titles.

Building Feature	Description
Building address:	Address, Alexandra
Overall plan dimensions:	William Fraser Block – 41.28 m (NW-SE) x 38.18 m (SW-NE)
Number of storeys:	1No. Stories
Gross floor area:	Approximately 2250m2 William Fraser Block – 1296.6m2.
Building history:	The William Fraser building was constructed in Circa 1978 with 2No known alterations since in 1993 and 2019-2023. The building was likely designed to: NZS4203-1976, NZS4203-1984. There has been no specific seismic strengthening undertaken in the building.
Occupancy:	2 Public Office Tenancies
Importance Classification: (AS/NZS 1170.0:2002: Table 3.2)	IL4 (DESCRIPTION FORM NZS1170.0)
Heritage Issues/ Status	Central Otago District Council District Plan Schedule 194. Listing Ref - None. Heritage New Zealand Pouhere Taonga – None

A summary of the building's features relevant to this assessment is provided in Table 6.

Table 6: Building Information

Please note as a single storey timber framed building there is significant inherent resilience that exists and therefore is appropriate to assess it as an IL4 structure.

Figure 2: Aerial photograph of site (source: CODC GIS Maps)

Figure 3: Front view of William Fraser Block looking from the West direction.

Figure 4: Rear view of William Fraser Block looking from the South direction.

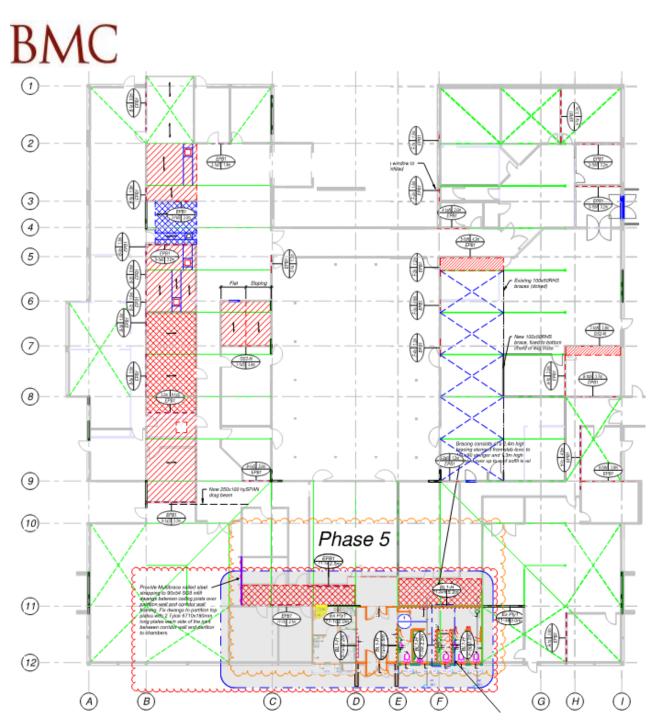


Figure 5: Plan view of William Fraser Block showing Existing Structure, Bracing walls and new alteration provisions.

5.2 Gravity Load Resisting System

The roof structure of the William Fraser Block building consists of profiled metal sheeting on timber purlins to rafters to under purlins to mono pitch timber spaced trusses to the internal pitch of the stepped duo pitched roof. The shorter pitch comprises of a similar construction to timber rafters fixed to the vertical face of the intern span monopitch trusses. The internal truss supports are steel posts and externally the mono-pitch trusses and rafter are supported on timber framed walls or steel posts.

The floor structure comprises ground bearing reinforced concrete slab with perimeter integral strip footings (ref sect 5.4).

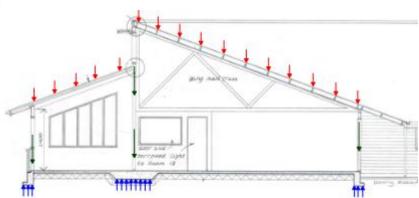


Figure 6: Typical Gravity Load Path Diagrams to William Fraser

5.3 Lateral Load Resisting System

The lateral load resisting system of the building in each orthogonal direction is provided by timber framed bracing walls with either steel cross bracing, plywood sheathing or GIB sheathing walls (some of this work was carried out as part of the previous remodelling work).

The out of plane walls and the roof structure are stabilized by the orthogonal bracing walls by the roof / ceiling diaphragms.

The bracing walls transfer the lateral loads to the foundations through their bracing (shear) resistance. The structure is typically connected to the foundations using holding down anchors to the ends of the bracing walls.

Figure 7: Typical Lateral Load Path Diagram in the NW-SE Direction (William Fraser Block SW elevation)

5.4 Foundation system

The foundation system comprises reinforced concrete strip footings with starters into the ground bearing reinforced concrete ground floor slab.

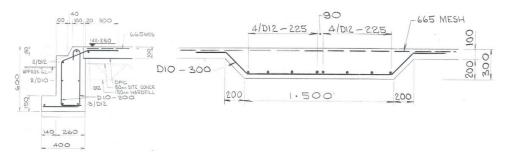


Figure 8: Typical foundation details, William Fraser.

BMC 5.5 Potential 'Severe Structural Weaknesses'

The MBIE Technical Guidelines clarifies many of the definitions used to identify structural components. These include:

Structural Weakness (SW)	An aspect of the building structure and/or the foundation soils that scores less than 100% <i>NBS</i> . An aspect of the building structure scoring less than 100% <i>NBS</i> but greater than or equal to 67% <i>NBS</i> is still considered to be a Structural Weakness even though it is considered to represent an acceptable risk.
Critical Structural Weakness (CSW)	The lowest scoring Structural Weakness determined from a DSA. For an ISA, all Structural Weaknesses are considered to be <i>potential</i> Critical Structural Weaknesses.
Severe Structural Weakness (SSW)	A defined Structural Weakness that is potentially associated with catastrophic collapse and for which the capacity may not be reliably assessed based on current knowledge. For an ISA, potential SSWs are expected to be noted when identified, and may extend to issues that require detailed seismic assessment before they can be removed from consideration.

Table 7: MBIE et al structural weakness descriptions

Many existing buildings are likely to have Structural Weaknesses (SWs) and therefore a Critical Structural Weakness (CSW), however this does not mean the building is unsafe. A Severe Structural Weakness (SSW) has the potential to result in catastrophic failure with severe consequences to building occupants.

An initial review of the available documentation for the building at 1 Dunorling Street, Alexandra has been performed to identify potential SSWs for closer inspection during the quantitative phase of the assessment however none were identified.

BMC 6 Building Observations

6.1 BMC Building Inspection

Before undertaking a building inspection, BMC carried out preliminary structural analyses in order to gauge areas of the building likely to be subject to damage when exposed to seismic loading, and therefore requiring specific attention. These areas may be described as 'potential structural hot-spots'. As BMC were engaged to undertake recent alterations to the building new invasive opening-up works were not subsequently required for this assessment other than an external inspection of the building. The findings of the external building inspection and our internal inspection of the previous alteration works are included below.

No#	Photo	Comments
1		William Fraser Block East Corner The exposed foundation shows cracking to the corner. The cracks do not extend to the brick veneer so this does not provide evidence of settlement. The West and south corners of the block exhibit similar cracking to foundation element.
2		William Fraser Block East Corner The North east entrance canopy comprises a slender steel moment resisting frame which will require consideration with regards to stability.
3		Both Blocks External Cladding The external veneer is generally windows and timber cladding from sill to eaves with a single wythe of brick veneer to ground level from sill. To the William Fraser Block only there are 2 full height buttressed brick veneer panels to the south west and north east side elevations and a higher masonry veneer to the toilets of this block to the south east elevation.

No#	Photo	Comments
4		Dunorling Street Roof Structure The roof structure comprises spaced timber trusses to internal timber or external steel posts to the internal courtyard area with loose timber rafters to the outer external walls. These are gravity frame only so the roof or ceiling diaphragm needs to transfer the lateral loads to the bracing wall locations.
5		Dunorling Street Internal Bracing Walls The internal bracing walls are a mixture of steel cut in angle cross bracing walls and plywood sheathed walls with varying nailing centres.
6		Dunorling Street Internal Bracing Walls The internal bracing walls from the alteration works also include roof diaphragms to the skillion elements of the roof (see 7 below).
7		Dunorling Street Internal Bracing Walls The internal bracing walls from the alteration works where required to transfer lateral loads from the roof structure to the bracing walls.

BMC 7 Geotechnical Considerations

7.1 Geotechnical Investigation

A Desktop Geotechnical Report was undertaken by Geosolve Limited Reference 230125 dated March 2023 which determined the assessment to be Structurally Dominated. The reader is advised to refer to and make themselves familiar with the Geosolve Limited report in full as our comments are intended as a brief summary only. BMC are not specialist geotechnical engineers and such work is outside our area of expertise. We have therefore relied on the advice provided by Geosolve Limited as specialist geotechnical engineers.

7.1.1 Subsurface Conditions

Geosolve Limited undertook a review of the soil maps and previous local borehole testing in the area. Table 8 summarises the subsurface composition as described in their report.

Soil	Description	Start Depth (m)	End Depth (m)
Fill	Asphalt pavement and gravel sub-base	0	Varies
Loess	Firm to stiff and loose to medium dense sandy SILT and silty Sand	Varies	2.2
Outwash Deposits	Medium dense to dense sandy Gravel with silt cobbles and boulders and inter beds of SAND with minor trace gravel and silt	2.2	>15.5 (18 – 50m from site)
Schist Bedrock	Haast Schist	>15.5 (18 – 50m from site)	

Table 8: Site soil profile as identified by Geosolve Limited

Groundwater levels were recorded at depths of 10.5m approx. 100m from the site below ground level (bgl).

7.1.2 Seismic Category

Geosolve Limited have stated that the soils correspond to a site subsoil Ground Class C Shallow Soil as referenced in NZS1170.5:2004.

7.1.3 Liquefaction Assessment

Geosolve Limited have undertaken a liquefaction assessment for the site using the method of a review of soil records and local historic testing. They note that there is no risk of significant settlement under a ULS event.

Structure Importance Level	Limit State Design	Annual Probability of Exceedance	Peak Ground Acceleration (g)
Level 4	Serviceability (SLS II)	1:500	0.30
	Ultimate (ULS)	1:2500	0.53

Table 9: Design Earthquake Scenarios and Peak Ground Acceleration as identified by Geosolve Limited

A depth to groundwater of 10.0m bgl has been assumed by Geosolve Limited for this evaluation.

The results of the analysis indicate that the site is classified as having a Negligible risk from liquefaction.

BMC 8 Quantitative Seismic Assessment

8.1 Seismic Design Loads

This quantitative assessment are based upon the MIBE et al Guidance documents "The Seismic Assessment of Existing Buildings" July 2017 Including Sections C1-4 and with particular reference to Section C9 – Timber Buildings & C10-Secondary Structural and Non-structural Elements.

8.1.1 Importance Level

On the basis that the current use of the building is for governance for post disaster function, the Importance Level of the building has been categorised as IL4 in accordance with Table 3.2 of AS/NZS1170.0:2002. Based on a design working life of 50 years, the annual probability of exceedance of an Ultimate Limit State (ULS) earthquake is 1/2500 in accordance with Table 3.3 of NZS1170.0:2002.

8.1.2 Seismic Assessment Parameters

For the assessment of the two blocks (timber framed buildings) Section C9 of the Technical Guideline documents states, "For timber framed buildings no more than two storeys high and with regular layouts, the bracing design provisions of NZS 3604:2011 can be adopted. This option should only be adopted if the distribution and spacing of bracing walls is generally in accordance with NZS 3604:2011. As bracing demands given in NZS 3604:2011 are derived from $\mu = 3.5$ and Sp = 0.70, these demands should be scaled accordingly for other values of μ and Sp". "A structural performance factor of Sp = 0.5 is recommended for the assessment of timber buildings." It is proposed to adopt this approach for both blocks.

The seismic loads used in this assessment are based on the provisions of the current loadings standard NZS1170.5:2004. In light of the recent release of the 2022 National Seismic Hazard Model (NSHM) the use of this as the basis of all assessments remains the required method to determine the loadings for the assessment. Further guidance on how this may effect assessments in the future can be found in the following document https://www.nzsee.org.nz/db/PUBS/Earthquake-Design-for-Uncertainty-Advisory_Rev1_August-2022-NZSEE-SESOC-NZGS.pdf which should be read in conjunction with further guidance "Seismic Risk Guidance for Buildings" (see the link in Section 11 of this report).

The base shear coefficient C(T) is a function of the building period, the structure ductility and the site geology, including proximity to known fault lines. The assumed seismic parameters for the building are summarised in Table 10:

Seismic Parameter	Values	Notes/Comments
Spectral Shape Factor $C_h(T)$	3.0	NZS1170.5:2004 Clause 3.1.2
Soil category:	С	NZS1170.5.2004 Clause 3.1.3, Ground Class C (DESCRIPTION FROM NZS1170.5:2004 cl 3.1.3)
Hazard factor Z:	0.21	NZS1170.5:2004 Clause 3.1.4
Return period factor R:	1.8	NZS1170.5:2004 Table 3.5

Seismic Parameter	Values	Notes/Comments
Near-fault factor N(T,D):	1	NZS1170.5:2004 Clause 3.1.6
Elastic site hazard spectrum C(T1):	0.89	NZS1170.5:2004 Equation 3.1 (1)

Table 10: Seismic parameters used in this assessment

Please note that BMC has only considered 'Ultimate Limit State' (ULS) performance of the structure (that is its capacity to resist a 'significant' seismic event without collapse). No assessment or consideration of Serviceability Limit State (SLS) performance has been made (that is the performance of the structure to resist 'small' more frequent earthquakes WITHOUT damage to the fittings / services etc).

8.1.3 Structural Ductility

Ductility is a measure of a building or its individual components ability to undergo sustainable inelastic displacements whilst maintaining sufficient residual strength to carry load. The term "inelastic" refers to actions beyond the base yield strength of the building or component being considered. The more ductile a building, the more energy it is able to dissipate. Since ductility inherently requires building structural components to be stressed beyond yield, there will be some permanent damage and deflections associated with this form of energy dissipation.

By considering available building ductility, the magnitude of the seismic forces for which the building is being assessed are able to be reduced to capture the effect of the energy dissipation. The structural ductility factors adopted in this seismic assessment are summarised in Table 11:

Element	Action	Ductility Factor µ	Structural Performance Factor S_p	
	Flexure	2.0		
Reinforced Concrete	Shear, Rocking	1.0	For nominally ductile structures	
Out-of-Plane Actions		1.25	(i.e. $\mu = 1.25$ or less) $S_p = 0.9$. For structures with a ductility	
Floor Diaphragm	All	1.0	factor μ equal to 2, $S_p = 0.8$.	
Steel Struts	Tension/Compression	1.0		
Timber Framing	Shear	3.5	S _p = 0.5 - SEAB C9.4.2	
Parts and portions	All	1.25		

Table 11: Structural ductility factors

The reduced forces must be accompanied by the ability to take additional displacement (without collapse) after the structure has yielded. The structure must therefore be detailed for this additional displacement.

As stated earlier the primary lateral load-resisting system being timber framed ply/GIB clad walls are resilient seismic elements by nature.

8.2 Material Properties

Because the original specification was not available for this building, the material properties used as part of this quantitative assessment have been based typical values for the period of construction. Where appropriate, probable values have been used for the assessment, in preference to characteristic values that would be used for the design of new structures, in accordance with *The MBIE Technical Guidelines*. Details are summarised in

	Wall Lining (Plaster Board fixed @ 300mm)	Probable Strength		1.0 kN/m each side	SAEB C9.6.2.3 T9.2
Timber frame construction	Roof Diaphragm (Straight Board)	Probable Strength Probable Stiffness	Parallel Perpendicular Parallel Perpendicular	4.0 kN/m 3.0 kN/m 250 kN/m 180 kN/m	SAEB C9.6.2.3 T9.3
	Plaster Board	Probable Strength		1.5 kN/m	SAEB C9.6.2.3 T9.3 (additional capacity to
roof o	Ceilings to roof or Floors	Probable Stiffness		400 N/m	Board values above)

Table 12:

Material	Structural Element	Material Property	Characteristic Value	Probable Value	Notes/comments/ assumptions
Reinforcing	All denoted by 'H'	Yield strength fy ed	500	540 (Char x 1.08 post-1970)	SAEB Part C Section 5 C5.4.3.2 & Table C5C.2
steel	All denoted 'D or R'		300	375 (Char x 1.25 pre-1970)	SAEB Part C Section 5 C5.4.3.2 & Table C5C.2
	Ground slab		20	30 (Char x 1.5)	
Concrete	Other slabs	Compressive strength f'c	20	30 (Char x 1.5)	SAEB Part C Section 5 C5.4.2.2 Table C5.3
	Foundations		20	30 (Char x 1.5)	
Structural Steel	Portal frame members	Yield strength f _y	300	330 (Char x 1.1 pre-1960 or post 1960 300 and above) (Char x 1.15	SAEB Part C Section 6 C6.4.4, Table C6.2 & App C6B

Material	Structural Element	Material Property	Characteristic Value	Probable Value	Notes/comments/ assumptions
				post1960 300 and below)	
Timber	Walls/ Roof	Probable strength, (MPa) bending compressive tensile		24.5 24.2 12.2	SAEB Part C Section 9 Table C9.1
	Wall Lining (Plaster Board fixed @ 300mm)	Probable Strength		2.0 kN/m each side	SAEB C9.6.2.3 T9.2
Timber frame	Roof Diaphragm	Probable Strength	Parallel Perpendicular	4.0 kN/m 3.0 kN/m	SAEB C9.6.2.3 T9.3
construction	(Straight Board)	Probable Stiffness	Parallel Perpendicular	250 kN/m 180 kN/m	
	Plaster Probable Board Strength		1.5 kN/m	SAEB C9.6.2.3 T9.3 (additional capacity to Board values above)	
	Ceilings to roof or Floors	Probable Stiffness		400 N/m	board values above)

Table 12: Material properties used in this assessment

8.3 Modelling Approach and Assumptions

As stated in 8.1.2 above the modelling approach adopted for the timber framed portion of the building (Dunorling St Block Only), is effectively using the bracing design provisions of NZS 3604:2011 as per the criteria for their use stated in Section C9 of the Technical Guideline documents.

The previous analysis used for the remodelling work carried out by BMC used standard GIB Ezybrace design values which are conservative compared with bespoke shear wall design techniques and use probable strength values that have all material properties safety factors set to 1.0.

BMC has reviewed the building's lateral load resisting systems and its part's and reviewed each bracing line with its tributary loading based on a flexible roof/ ceiling diaphragm. These have been individually assessed as part of this report as an SED review of each line:

The following specific assumptions relate to this assessment,

- The use of bracing design provisions of NZS3604 for timber framed construction (via SED Bracing line capacity spreadsheets), meets the criteria stated in Section C9 of the Technical Guideline documents.
- Geotech ground conditions and foundations are expected to perform adequately based on the significant in-service history and the fact no significant foundation settlement was observed.
- It is understood that the exterior brick veneer elements that exist in the ground floor of building are adequate fixed to the timber studs of the walls for this assessment.

- The numerous alterations that have occurred throughout the life of the building have been generally carried out in accordance with 'good practice' of the day.
- The condition of the hidden timber structure has not been fully viewed but given the condition from the recent localised cladding removal work for the alterations it is assumed that they are in a good condition. It should be noted that this can only be fully determined if wall linings are stripped.

8.4 Overall Building Performance

The building will act with respect to a series of bracing lines both longitudinal and transverse to the main ridge of the building. These bracing lines are considered to be spaced at reasonable centres in both directions. Additional seismic load from the masonry veneer panels have been allowed for and distribute to the roof level dependent upon the panel's height. Roof and ceiling diaphragms in plywood will allow the loads from the roof and out of plane walls to distribute the load to the bracing line shear walls. The shear walls have a variation of sheathing materials resulting in varying bracing capacity based upon the time of construction which has been allowed for in the assessment.

8.5 Quantitative Results Summary

A summary of the results from the quantitative assessment is provided in the table below. These values/ratings effectively represent an estimate of the original seismic load resistance of the building.

The percentage of the current New Building Standard (NBS) with respect to seismic loads for the structures as examined (that is in 'as is' condition), is as follows:

Specific structural review element	Direction	%NBS (IL4)	SSW	Notes/description of limiting criteria
	Duno	rling Street Bloc	k	
	NW-SE (Longitudinal)			
	A-West	100%		
	B-West	100%		
	C-West	100%		
	D-Central	100%	No	Shear capacity
	E-Central	100%	NO	Shear capacity
	F-East	100%		
	G-East	N/A		
Bracing Lines	H-East	100%		
	I-East	100%		
	SW-NE (Transverse)			
	1-West	Load to GL2		
	1-East	Load to GL2		
	2-West	100%	No	Shear capacity
	2-East	100%		
	3-West	100%		
	3-East	100%		

Specific structural review element	Direction	%NBS (IL4)	SSW	Notes/description of limiting criteria
	4-West	N/A		
	4-East	100%		
	5-West	100%		
	5-East	100%		
	6-West	N/A		
	6-East	N/A		
	7-West	100%		
	7-East	100%		
	8-West	100%		
	8-East	100%		
	9-Cental	100%		
	10-Central	N/A		
	11-Central	100%		
	12-Central	Load to GL11		
Roof Diaphragm	Link Roof 11.8m x 2.6m (Longitudinal)	100%	No	Bending and Deflection Capacity
Parts	Studs OOP wit URM Veneer Parts loading (Transverse and Longitudinal)	100%	No	Bending Capacity

Table 13: Quantitative results summary (for Bracing Line Grid References refer to figure 5.)

Summary calculations / assessment outputs are included in Appendix B.

The results are such that BMC consider the %NBS value for the building to be 100%NBS(IL4). BMC consider the Critical Structural Weakness to be: Not Applicable to this building.

This puts the building into the category of a Seismic Grade A building as defined by the NZSEE Rating system (see Table 4).

As the building has no structural components with a seismic capacity of less than 33%NBS, BMC consider it does not meet the first criteria of the definition of an earthquake-prone building, as set out in Clause 133AB of the Building (Earthquake-prone Buildings) Amendment Act 2016.

The elements of the building overall which place the building in the "Earthquake-prone" Building classification are: Not Applicable to this building. The mode of failure is Not Applicable to this building.

The elements of the building parts which place the building in the Earthquake-prone building classification are: Not Applicable to this building The mode of failure is Not Applicable to this building

9 Strengthening Strategy

The findings of the assessment have determined a seismic rating of the building to be 100%NBS(IL4) and as such the requirement for a Strengthening Strategy is not required.

As stated previously to ensure the successful continued operation of the building 'post disaster' other aspects (e.g. power / water supply, sewerage disposal, flooding proneness etc.) will need to be considered

10 Seismic Restraint of Non-Structural Items

During an earthquake, the safety of people can be put at risk due to non-structural items falling on them. These items should be adequately seismically restrained, where possible, to the NZS 4219:2009 "The Seismic Performance of Engineering Systems in Buildings".

The following Secondary Structural and Non-structural elements have been identified and assessed: -Masonry Veneers Ceilings Canopies and other appendages

An assessment has been made of these elements with the following findings: -

- The studwork walls supporting the Masonry veneers have adequate strength to stabilise the loads and it is assumed given the age of the building, that the wall ties are effective in providing the restraint, but it is recommended that this is checked visually around the building.
- The Suspended ceilings are predominantly GIB fixed to the ceiling and roof construction or to Plywood diaphragms. Tile system suspended ceilings are not present the William Fraser building but are present within the Kelman Street element but this building does not form part of this assessments scope.
- Canopy and walkway Roof diaphragms have been assessed as being sufficient to stabilise the wall loading back to the main building bracing walls.

11 Continued Occupancy Recommendations

Based on our assessment of the building, BMC consider continued occupancy is appropriate *subject to the conditions of the Earthquake Prone Buildings Act.* That is, if the Territorial Authority has: issued an Earthquake Prone Notice for the Building then it is displayed in accordance with Section 133AP; not determined that any safety actions in accordance with Section 133AR are required; or, the building is located within an area that has been affected by an emergency under subpart 6B of Section 133.

MBIE have prepared a guidance document for building owners and key stakeholders that provides a framework for making decisions relating to continued occupancy of earthquake prone buildings. The document also provides further context to the %NBS ratings reported in seismic assessment reports. A link to the guidance document is found below:

https://www.building.govt.nz/assets/Uploads/getting-started/seismic-risk-guidance-for-buildings.pdf

12 Recommendations

BMC's recommendations are summarised as follows:

• Ensure the Brickwork veneers are adequately tied to the Timber framed studwork..

Note that some localised loss of the veneer cladding may occur under a ULS event, but this is not considered to compromise the overall structural integrity or utility of the building.

Appendix A – Technical Summary Sheet

(to be provided to the Territorial Authority as per the MBIE Technical Guidance)

1. Building Information	on
Building Name/ Description	Alexandra Service Centre
Street Address	1 Dunorling Street, Alexandra
Territorial Authority	Central Otago District Council
No. of Storeys	1No. Stories
Area of Typical Floor (approx.)	Approximately 2250m2
Year of Design (approx.)	Circa 1978
NZ Standards designed to	The building was likely designed to: NZS4203-1976, NZS4203-1984.
Structural System including Foundations	The building consists of two main elements the William Fraser Block and the Kelman Street Block. The assessment is required for the William Fraser Building only. It is single storey in height having a U-shaped footprint. It comprises a timber trussed stepped duo pitch roof structure supported by internal and external load bearing timber framed walls on RC foundations with a timber cladding to the window heights and a brick masonry veneer under the sill level.
Does the building comprise a shared structural form or shares structural elements with any other adjacent titles?	The building does not comprise a shared structural form on elements with adjacent titles.
Key features of ground profile and identified geohazards	The geotechnical review of existing reports / documentation of the site has determined it to be: - The Site is in Ground Class C - Shallow Soil and has a Negligible risk from liquefaction.
Previous strengthening and/ or significant alteration	There has been no specific seismic strengthening undertaken in the building.
Heritage Issues/ Status	Central Otago District Council District Plan Schedule 194. Listing Ref - None. Heritage New Zealand Pouhere Taonga – None
Other Relevant Information	None

2. Assessment Information

2. Assessment inform	
Consulting Practice	Batchelar McDougall Consulting
 CPEng Responsible, including: Name CPEng number A statement of suitable skills and experience in the seismic assessment of existing buildings¹ 	Warren Holt 1026871 - Practice Area description - Structural design, seismic assessment, and construction monitoring for low rise buildings. 10 years experience of seismic assessment in New Zealand NZSEE Conference 2013, 2015, 2021 & 2023 NZSEE seminars on ISA's 2013, 2014 NZSEE Seismic assessment of URM seminar 2015 NZSEE – Seismic Assessment of Existing Building Seminar 2016 Concrete NZ – Displacement Based Seismic Design Assessment Seminar 2018 SESOC/NZSEE – Seismic Assessment of Existing Building Seminar 2019 MIBE - Earthquake Prone Building Methodolgy 2020 ISEC Seismic Engineering Workshop and URM Strengthening 2020
 Documentation reviewed, including: date/version of drawings/ calculations² previous seismic assessments 	Architectural & Structural Drawings of G.O.A.B. Alexandra Job Ref: 7/286/2 Sheets 78No. dated Dec 1978 by: Ministry Of Works. Architectural Drawings of Alterations to William Fraser Building Job Ref: 3137/w7 Sheets (13No.) dated Apr 1993 by: Salmond Anderson Heath Architects. Structural Drawings of Refurbishment of William Fraser Building Job Ref: 14455 Sheets S1-2 dated Jun 1993 by: Duffill Watts & King Ltd Architectural & Structural Drawings of Extension to William Fraser Building, Alexandra Job Ref: 7/286/19 Sheets (25No.) dated Dec 1986 by: Ministry Of Works.
Geotechnical Report(s)	A Desktop Geotechnical Report was undertaken by Geosolve Limited Reference 230125 dated March 2023 which determined the assessment to be Structurally Dominated.
Date(s) Building Inspected and extent of inspection	23/03/2021
Description of any structural testing undertaken and results summary	The walls where drilled to confirm composition where not visually evident and the RC elements scanned to determine centres of reinforcement.
Previous Assessment Reports	There were no previous seismic assessment reports available of the building elements.
Other Relevant Information	None

¹ This should include reference to the engineer's Practice Field being in Structural Engineering, and commentary on experience in seismic assessment and recent relevant training

² Or justification of assumptions if no drawings were able to be obtained

3. Summary of Engineering Assessment Methodology and Key Parameters Used						
Occupancy Type(s) and Importance Level	IL4					
Site Subsoil Class	Ground Class C Shallow Soil					
 Summary of how Part C was applied, including: the analysis methodology(s) used from C2 other sections of Part C applied 	These quantitative assessments are based upon the MIBE et al Guidance documents "The Seismic Assessment of Existing Buildings" July 2017. Including Sections C1-4 and with particular reference to C9 - Timber Buildings & C10 - Secondary Structural and Non-Structural Elements.					
Other Relevant Information	None					

3. Summary of Engineering Assessment Methodology and Key Parameters Used

4. Assessment Outcomes

4. Assessment Outcomes						
Assessment Status (Draft or Final)	Final (DSA)					
Assessed %NBS Rating	100%NBS(IL4)					
Seismic Grade and Relative Risk (from Table A3.1)	Seismic Grade A					
Comment on the nature of Secondary Structural and Non-structural elements/ parts identified and assessed	The following Secondary Structural and Non-structural elements have been identified and assessed: - Masonry Veneers Ceilings Canopies and other appendages					
Describe the Governing Critical Structural Weakness	BMC consider the Critical Structural Weakness to be: Out-of-plane rocking failure of the upper portions of the unreinforced masonry side and rear perimeter wall elevations					
If the results of this DSA are being used for	Engineering Statement of Structural Weaknesses and Location	Mode of Failure and Physical Consequence Statement(s)				
earthquake prone decision purposes, <u>and</u>	Building Overall					
elements rating <34%NBS have been	Not Applicable to this building	Not Applicable to this building				
identified (including Parts) ³ :	Parts of Building					
	Not Applicable to this building	Not Applicable to this building				
Recommendations (optional for EPB purposes)	Not Applicable to this building.					

³ If a building comprises a shared structural form or shares structural elements with other adjacent titles, information about the extent to which the low scoring elements affect, or do not affect the structure.

Appendix B – Summary Calculations / Assessment Outputs

Subject: Assessment Summary William Fraser Block

Assessment Summary

Job No: 1708-2227a By: WH Checked: Page: of: Date: 7/08/23

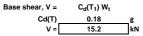
Importance Level ULS Seismic Coefficier	μ e Fac S _p IL nt C _d (T)	3.5 0.5 4 0.45	g	Building Information Built in Length Width Ground Floor Height Ridge Height East / West Wing width	BL BW H _{GF} R _{GF} W _{EW}	1974 41.3 38.3 2.35 5.7 13.3	m m m <i>Varie</i> m
		Pr.	Dase 5				
URM Veneers OOP	Wall Veneer C	OP Load	s				
Check Typical Brick of Horizontal Eq Coeff Tributary Weight Fixing Eq Coeff Shear Mmt to Studs Moment Capacity	F _{ph} V*	1.03 2.34 kN 0.64 kN 0.68 k	g kPa g	3			
Horizontal Eq Coeff Tributary Weight Fixing Eq Coeff Shear Mmt to Studs Moment Capacity In-Plane Bracing Ca Longitudinal Gridlines A 100 %NE B 100 %NE C 100 %NE D 100 %NE E 100 %NE F 100 %NE G N/A %NE H 100 %NE	Wt F _{ph} V* Μ* φM _n	1.935 1.03 2.34 kN 0.64 kN 0.68 k	g kPa g //m m/600mm stud kNm	Transverse Gridlines to 1W %NBS(IL4) 98 %NBS(IL4) 100 %NBS(IL4)	1E 2E 3E 4E 5E 6E 7E 8E	to 1E 100 100 100 N/A 100 100	%NBS(IL4) %NBS(IL4) %NBS(IL4) %NBS(IL4) %NBS(IL4) %NBS(IL4) %NBS(IL4) %NBS(IL4)

GRM

BMC Job Name: Subject:	BATCHELAR McDOUGALL CONSULTING Structural & Civil Engineers Alexandra Service Centre Earthquake Coefficient				Job No: By: Page: Date:	1708-2227a WH L1 4/08/23	a Checked: of:		
NZS1170 Pt 5:2004	Equivale	nt Static Ear	thquake	Coefficie	ent				
	Soil Type Building Design Life Importance Level Building Location ULS Return Period SLS Return Period Hazard Factor, Z R _u R _s Direction Period, T ₁ (s)		C - Shallow Soil 50 Years 4 Alexandra 1/2500 Years 1/25 Years 0.21 1.8 0.25			Refer to Cl 3.1.3 See Table 3.1 (NZS1170.0)			
			Duc µ _{ULS}	ctility µ _{SLS}	N(T,D), ULS	N(T,D), _{SLS}	C _h (T)	C(T) _{ULS}	C(T) _{SLS}
	Х	0.4	1 F	1 J	1.0	1.0	2.36	0.89	0.12
	Y	0.4	3.5	1	1.0	1.0	2.36	0.89	0.12
	S _p Factor C Chosen S _p k _μ	o <i>m NZS1170</i> Iveride Factor	1 0.5 1.0 1.0 0.45	(leave blank to use 1170 default) uls sls					
	ULS Seismic Coefficient, C0.45SLS Seismic Coefficient, C0.09Direction Y S_p Factor from NZS11700.7 S_p Factor Overide0.5Chosen S_p Factor0.5 k_{μ} 2.41.01.0ULS Seismic Coefficient, C0.18SLS Seismic Coefficient, C0.09			g $(S_p = 0.7)$					
				(leave bla	nk to use 1	170 default)			
				uls sls		, i o derault)			
				g	$(S_p = 0.7)$)			

Job Name: Subject:	BATCHELAR McDOUGALL C Structural & Civil Engi Alexandra Service Centre Earthquake Parts Coefficien	neers		Job No: By: Page: Date:	1708-2227 W Holt 4/08/23	'A Checked: of:					
NZS1170 Pt 5:2004	Building Parts Seismi	c Coeffi	cient								
	Part Classification	P.1		Refer NZ	S1170.5 Ta	ble 8.1					
	Part Risk Factor		Part representing a hazard to life outside the structure								
	Structure Limit State		(ULS) e.g. cladding, glazing, veranda, sign								
	Structure Limit State ULS										
	Elastic Site Spectra for the Building										
	Site Subsoil Class:	C	Shallow S	Soil	Table 3.1 NZS1170.5						
	Spectral shape factor T=0 0	Ch(0)	1.33			Ref Table 3.1, NZS1170.5, Note 1					
	Location of Site Hazard Factor, Z		Alexandra 0.21								
	Building Importance level		4			AS/NZS1170.0 Table 3.2					
	Design working life		50 years			AS/NZS1170.0 Table 3.3					
	SLS category		SLS1								
	Annual probability of exceed	lance									
	ULS		1/2500			AS/NZS1170.0 Table 3.3					
	SLS		1/25			AS/NZS1170.0 Table 3.3					
	Risk Factor										
	Ru Rs		1.80 0.25			AS/NZS1170.0 Table 3.5					
	Use		0.25 1.80								
	Near-fault factor N(T,D)		1.00			eqtn 3.1(2), 3.1(3) of NZS1170.5					
	ZRu		0.38			(maximum value is 0.7)					
	$C(0) = Ch(0) \ge R N(T,D) =$		0.50			, , , , , , , , , , , , , , , , , , ,					
	Floor Height Cofficient C _{Hi}										
	Height of structure, h_n	5.7	m	heiaht fror	n base to uppermost seismic mass						
	Height of part, h_i	1.2	m								
	Floor Height Coeficcient, C _H	1.2		1) or (2) or (3) of NZS1170.5							
	Part Spectral Shape Cooff	iciant									
	Part Spectral Shape Coeff Period of the Part, Tp	Icient	0.40	s	NR: Use t	he period of the part not the building.					
	Part Spectral Shape Coeff, (Ci(Tp)	2.0	0	,12,000 4	NZS1170.5 eqtn 8.4.1					
	Ductility of the Part Preselected part no# Description of Part		8 External w	all or clade	ding (mason	<i>Ref NZS1170.5 table C8.2</i> ry- including glass blocks)					
	Indicative deformation limits	for onset	11/000 //								
	of damage			e loading),	H/600 (in-p	piane)					
	Part Ductility, m _p Sl	ULS LS1/SLS2	2.00 1.00								
	Limit State (ULS or SLS)	m _p	2.00	<u>Ultimate</u>	<u>Limit State</u>						
	Part Response Factor, Cph		0.55		refer table	8.2, take as Cpv ref 8.6					
	Design Response Coeffici $Cp(Tp) = C(0) C_{Hi} C_i(Tp) =$	ent	1.21								
	Horizontal Earthquake Coeff	ficient									
	Part $F_{ph} = C_p (T_p) C_{ph} R_{p,} < 3$		0.66								
	Part Fixing F_{ph} (m=1.25, C_{ph}		1.03								
	Vertical Earthquake Coeffici	ent									
	$C_{vd} = Cv(Tv)Sp = 0.7C(T)Sp$		0.25		Sp	0.70					
	Part $F_{pv} = C_{pv} C_{vd} R_{p,} < 2.5 =$		0.14		•						
	Part Fixing F _{pv} (m=1.25, C _{ph}	=0.85)=	0.21								

		DATCHELAD			Alexandra Service	Contro		
		BATCHELAR			1 Dunolring Street	Centre		
F	$\Lambda \Lambda \Lambda$	MCDOUGALL			Alexandra			
L		CONSULTING STRUCTURAL & CIVIL ENGINEERS		onsult.co.nz	/ lioxanara			
War	naka Office: Level 3	3, 99 Ardmore Street. Phone		01100112	1708-222	7A	Aug-23	WH
		,			ref			
	Beam Span =	2.4	m					
				tributed Loads			_	
#	Load Type	Description		Uniform Pressure		Total UDL		b (m)
W 1	Snow, S		(m) 0.6	(kPa) 1.2177	(kN/m)	<u>(kN/m)</u> 0.73	(m) 0	(m) 2.4
W ₂	Show, 5		0.0	1.2 111		0.75	U	2.4
W_3								
W4								
W_5								
W_6								
W_7								
W_8								
			D ata da a					
			Point Loa Tributary Area	d s Uniform Pressure	Additional PL	Total PL	с	
#	Load Type	Description	(m ²)	(kPa)	(kN)	(kN)	(m)	
P ₁			(111)	(Kra)			(11)	
P ₂								
P ₃								
P_4								
P_5								
P_6								
P ₇								
P ₈								
			Try Tim	per Beam				
					Strength Reduction	Factor, φ	= 0.8	
		Timber Environment	Dry		Load Duration			
		Timber Grade	SG8		Parallel Support	Factor, k₄ =	= 1	
		Shape	Rectangular			erness, S =		
	Section Size	Use 1 x	090x045	SG8	Reduction			
			(Enter custom s	ections freely as ##	##x### or ### for ci	rcular sect	ions)	
	Numl	ber of Elements in System	1	Element in system				
		Grid System	No					
1.1142		Character Calandadian						
Ultil		Strength Calculation of Lateral Restraints, L _{av, c}	1000		ion odro)			
		· · · · · · · · · · · · · · · · · · ·		mm (on compress	•			
	Spacing	g of Lateral Restraints, $L_{ay,t}$	1200	mm (on tension ed	age)			
				Bor	nding Strength, f _b =	14	MPa	
		Memory Demond M* 0	E Jahlma		Shear Strength, $f_s =$			
		Moment Demand, $M^* = 0$. Shear Demand, $V^* = 0.9$ k			d. Of Elasticity, $E =$	3.8 5.4	MPa GPa	
		Shear Demanu, V = 0.5 K			ection Modulus, $Z =$	60750	mm ³	
	Allowable	Bending Strength, φM _n =	0.68	kNm - OK		00750		
		ble Shear Strength, $\phi V_n =$		kN - OK				
Ser	viceabilitv Limit St	tate - Deflection Calculation	on					
		Deflection Limit, L/??	150	Allo	wable Deflection =	16.0	mm	
				2 _{nd} Mo	oment of Area, $I_x =$	2.7	x10 ⁶ mm ⁴	
		Maximum Deflection	14.7					
		=	L / 163	OK				
I		Moments & Read	ctions		Doffe	ctions		
		Moments & Read	Reaction A	Reaction B	G only	0.0	mm	
	G	0.0	0.0	0.0	2G+0.7Q	0.0	mm	
	Q	0.0	0.0	0.0	G+0.4Q+Wdn,sls	0.0	mm	
	Wup	0.0	0.0	0.0	Wup,sls	0.0	mm	
	Wdp Wdn	0.0	0.0	0.0	2G+S,sls	14.7	mm	
	S	0.5	0.9	0.9	1kN pt load	19.51	mm	
	1.35G	0.0	0.0	0.0	Notes:			
	1.2G+1.5Q	0.0	0.0	0.0				
	4.00.0.11/1-	0.0	0.0	0.0				
	1.2G+Q+Wdn							
	0.9G+Wup	0.0	0.0	0.0				
				0.0 0.9 0.9				


BATCHELAR					Alexandra Service	e Centre	
R N MCDOUGALL					1 Dunorling St		
					Alexandra		
					Dunorling Street	Block	
Wanaka Office: Level 3, 99 Ardmore Street	Phone: (03) 443 4531	www.bmconsult.co.nz	www.bmconsult.co.nz		1708-2227A	Aug-23	WH
Subject:				Seismic Demand Calculations Gridline A			

Material	μ	C _d (T)	NBS%	C _d (T) (Design)
Steel	1.25	0.37	100%	0.37
Timber Bracing	3.5	0.18	100%	0.18

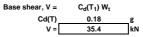
Element Properties Used in Demand Calculations

Material	w	eight
URM Wall Veneer	18.00	kN/m3
Timber Roof	0.40	kPa
Timber Floor	0.40	kPa
Floor Live Load	0.45	kPa
In Plane External Timber Frame	0.35	kPa
Glazing	0.25	kPa
Internal Timber Framing	0.25	kPa
OoP Ext Timber Framing	0.35	kPa

Equivalent Static N	lethod	Bracing Type	Timber Bracing				
level i	G _i [kN]	Σψ _E Q _i	W _i [kN]	h i [m]	Wihi	F _i [kN]	ΣF [kN]
2	84.6	0.0	84.6	8.48	718	#VALUE!	#VALUE!
1	0.0	0.0		3.35	#VALUE!	#VALUE!	#VALUE!
					(0/AL LIE)		
totals	84.6	0.0	84.6		#VALUE!	#VALUE!	#VALUE

Bracing Line Tributary Width	1.975	m
Building West Width	13.3	m
Building Length	41.3	m
Ground Floor Height	2.35	m
Sill Height	0.825	m
Ridge Height	5.7	m

∧∧('⊸мс	FCHELAR Dougall NSulting										Alexandra Se 1 Dunorling Alexandra	ervice Centre St	
STRUCT	URAL & CIVIL ENGINEERS										Dunorling St		
a Office: Level 3, 99 Ardmore St Subject:	reet	Phone: (03) 443 4531	www.bmconsult.co.nz		Seismic Demand	Calculations Gridline A	- Ground Floor				1708-2227A	Aug-23	W
•					Scisinie Bernana		oround noor						
Ground Floor Bracing Type:		with µ=	3.50	and $C_d(T) =$	0.18	~							
Select Load Type	Timber Bracing Description	Length (m)	Width (m)	Depth/Height (m)	Number of, #	g	Weight	Units	Element Weight	Cd(T)	Force	Height to CON	1 Mor
Plane External Timber Frame	GLA		Width (iii)		Number 01, #				(kN)	(g)	(kN)	(m)	(k) 0
lazing	GLA	8.29 33.01		1.18 1.18		x x	0.35 0.25	kPa kPa	3.41 9.70	0.18 0.18	0.6 1.7		
RM Wall Veneer	GLA Full Height	5.40	0.10	1.18			18.00	kN/m3	11.71	0.18	2.1		0
RM Wall Veneer	GLA below sill	26.21	0.10	0.20		x	18.00	kN/m3	9.7	0.18	1.7		0
			0.10			x							
n Plane External Timber Frame	GLA below sill	6.80		0.20		x	0.35	kPa	0.5	0.18	0.1		(
lazing		3.95		1.18		x	0.25	kPa	1.2	0.18	0.2		c
RM Wall Veneer	below sill	3.95	0.10	0.20		x	18.00	kN/m3	1.5	0.18	0.3		0
IOP Ext Timber Framing	below sill	3.95	0120	0.20		x	0.35	kPa	0.3	0.18	0.0		
or Externing	Sciew sin	5.55		0.20		^	0.55	Ki û	0.5	0.10	0.0		
nternal Timber Framing	OoP	9.88		1.50		x	0.25	kPa	3.7	0.18	0.7		c
nternal Timber Framing	in-plane	3.64		1.75		x	0.25	kPa	1.6	0.18	0.3		(
imber Roof		2.48	41.90			x	0.40	kPa	41.5	0.18	7.5		
							<u>.</u>		85	F(kN) =	15.2	0.0	(
Ground Floor Weight	Summary 85	kN	Timber Bracing - Ground Element		Height	Foundation type	Capacity (kN/m)	Capacity (kN)	1				
V*	15.2	kN	Ex.Ply1	0.50	2.40	Concrete	6.50						
Height to COM	0.0	m (Weighted Average)	Ex.Ply1	1.37		Concrete	6.50						
Bending Moment	0.0	kNm	Ex.Ply1	2.90	2.40	Concrete	6.50	18.85					
							Total Capacity	31.0					
							Demand	15.2 100%	kN %NBS (IL2)				
								100%	/014D3 (ILZ)				


BATCHELAR					Alexandra Service	Centre	
R MCDOUGALL					1 Dunorling St		
					Alexandra		
					Dunorling Street	Block	
Wanaka Office: Level 3, 99 Ardmore Street	Phone: (03) 443 4531	www.bmconsult.co.nz	www.bmconsult.co.nz		1708-2227A	Aug-23	WH
Subject:				Seismic Demand Calculations Gridline B			

Material	μ	C _d (T)	NBS%	C _d (T) (Design)
Steel	1.25	0.37	100%	0.37
Timber Bracing	3.5	0.18	100%	0.18

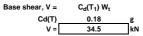
Element Properties Used in Demand Calculations

Material	w	/eight
URM Wall Veneer	18.00	kN/m3
Timber Roof	0.40	kPa
Timber Floor	0.40	kPa
Floor Live Load	0.45	kPa
In Plane External Timber Frame	0.35	kPa
Glazing	0.25	kPa
Internal Timber Framing	0.25	kPa
Ext Timber Framing	0.35	kPa

G _i [kN] 196.4 0.0	Σψ _E Q _i 0.0 0.0	W _i [kN] 196.4	h _i [m] 8.48 3.35	W ihi 1666 #VALUE!	F _i [kN] #VALUE! #VALUE!	ΣF [kN] #VALUE! #VALUE!
		196.4				
0.0	0.0		3.35	#VALUE!	#VALUE!	#VALUE
	0.0	196.4		#\/ALLIE!	#\/ALLIE!	#VALUE
	96.4	96.4 0.0	96.4 0.0 196.4	96.4 0.0 196.4	96.4 0.0 196.4 #VALUE!	96.4 0.0 196.4 #VALUE! #VALUE!

Bracing Line Tributary Width	6.65	m
Building West Width	13.3	m
Building Length	41.3	m
Ground Floor Height	2.35	m
Sill Height	0.825	m
Ridge Height	5.7	m

∧ ∧ ('⊸ мс	TCHELAR DOUGALL										Alexandra S 1 Dunorling Alexandra	ervice Centre St	
	NSULTING TURAL & CIVIL ENGINEERS										Dunorling S		
a Office: Level 3, 99 Ardmore S	treet	Phone: (03) 443 4531	www.bmconsult.co.nz								1708-2227A	Aug-23	W
Subject:					Seismic Demano	Calculations Gridline	B - Ground Floor						
Ground Floor Bracing Type:	Timber Bracing	with μ=	3.50	and $C_d(T) =$	0.18	g							
Select Load Type	Description	Length (m)	Width (m)	Depth/Height (m)	Number of, #		Weight	Units	Element Weight	Cd(T)	Force	Height to COM	
iternal Timber Framing	GL B In-plane	27.60		2.53	0.80	x	0.25	kPa	(kN) 13.94	(g) 0.18	(kN) 2.5	(m)	(kNi 0.0
xt Timber Framing	GLB upper	31.50		2.10	0.80	x	0.35	kPa	18.52	0.18	3.3		0.0
xt Timber Framing		1.55		1.18		x	0.35	kPa	0.6	0.18	0.1		0
lazing		11.75		1.18		x	0.25	kPa	3.5	0.18	0.6		0
RM Wall Veneer	below sill	9.80	0.10	0.20		x	18.00	kN/m3	3.6	0.18	0.7		0
xt Timber Framing	below sill	3.50		0.20		x	0.35	kPa	0.2	0.18	0.0		C
ternal Timber Framing	OoP	27.65		1.18	0.85	x	0.25	kPa	6.9	0.18	1.2		C
ternal Timber Framing	in-plane	3.64		1.18		x	0.25	kPa	1.1	0.18	0.2		0
mber Roof		6.65	41.90			x	0.40	kPa	111.5	0.18	20.1		0
mber Floor		3.98	23.00			x	0.40	kPa	36.6	0.18	6.6		(
									196	F(kN) =	35.4	0.0	
Ground Floor	Summary		Timber Bracing - Ground F						196	F(KN) =	35.4	0.0	(
Weight	196	kN	Element	Length	Height	Foundation type	Capacity (kN/m)	Capacity (kN)	-				
V* Height to COM	35.4 0.0	kN m (Weighted Average)	EP1 Ex.Ply1	1.00 2.00	2.40	Concrete Concrete	5.2						
Bending Moment	0.0	kNm	EP1	1.30	2.40		6.7						
			EP1	0.60		Concrete	5.2	25 3.15	5				
			EP1	1.60		Concrete	6.7						
			EP1 EP1	1.60 3.00		Concrete Concrete	6.7 6.7						
			Ex.Ply1	0.70		Concrete	6.5						
			Ex.Ply1	0.70	2.40	Concrete	6.5		5				
							Total Capacity	81.3	L kN				
							Demand		1 kN				
								100%	%NBS (IL2)				


BATCHELAR					Alexandra Service	Centre	
R MCDOUGALL					1 Dunorling St		
					Alexandra		
STRUCTURAL & CIVIL ENGINEERS					Dunorling Street	Block	
Wanaka Office: Level 3, 99 Ardmore Street	Phone: (03) 443 4531	www.bmconsult.co.nz	www.bmconsult.co.nz		1708-2227A	Aug-23	WH
Subject:				Seismic Demand Calculations Gridline C			

Material	μ	C _d (T)	NBS%	C _d (T) (Design)
Steel	1.25	0.37	100%	0.37
Timber Bracing	3.5	0.18	100%	0.18

Element Properties Used in Demand Calculations

Material	w	/eight
URM Wall Veneer	18.00	kN/m3
Timber Roof	0.40	kPa
Timber Floor	0.40	kPa
Floor Live Load	0.45	kPa
In Plane External Timber Frame	0.35	kPa
Glazing	0.25	kPa
Internal Timber Framing	0.25	kPa
OoP Ext Timber Framing	0.35	kPa

Equivalent Static M	ethod	Bracing Type	Timber Bracing				
level i	G _i [kN]	Σψ _E Q _i	W _i [kN]	h i [m]	Wihi	F _i [kN]	ΣF [kN]
2	191.8	0.0	191.8	8.48	1626	#VALUE!	#VALUE!
1	0.0	0.0		3.35	#VALUE!	#VALUE!	#VALUE!
totals	191.8	0.0	191.8		#VALUE!	#VALUE!	#VALUE!

Bracing Line Tributary Width	4.675	m
Building West Width	13.3	m
Building Length	41.3	m
Ground Floor Height	2.35	m
Sill Height	0.825	m
Ridge Height	5.7	m
Part Trib width 1	2.9	m

Alexandra Service Centre

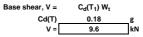
1 Dunorling St Alexandra

Dunorling Street Block 1708-2227A Aug-23 WH

Vanaka Office: Level 3, 99 Art Subject: Phone: (03) 443 4531 www.bmconsult.co.nz

	Ground Floor													
	Bracing Type:	Timber Bracing	with µ=	3.50	and $C_d(T) =$	0.18	g				0 1/7)	-		
#	Select Load Type	Description	Length (m)	Width (m)	Depth/Height (m)	Number of, #		Weight	Units	Element Weight (kN)	Cd(T) (g)	Force (kN)	Height to COM (m)	Moment (kNm)
W_1	In Plane External Timber Frame	GL A	10.43		1.18		x	0.35	kPa	4.29	0.18	0.8		0.0
w ₂	Glazing	GLA	17.73		1.18		x	0.25	kPa	5.21	0.18	0.9		0.0
W_3														
W_4	URM Wall Veneer	GLA below sill	7.20	0.10	0.20		x	18.00	kN/m3	2.7	0.18	0.5		0.0
W_5	In Plane External Timber Frame	GLA below sill	14.15		0.20		х	0.35	kPa	1.0	0.18	0.2		0.0
W_6	Internal Timber Framing		13.15		2.88	0.85	x	0.25	kPa	8.0	0.18	1.4		0.0
w_7	Glazing		4.53		1.18		x	0.25	kPa	1.3	0.18	0.2		0.0
w_8	URM Wall Veneer	below sill	3.05	0.10	0.20		x	18.00	kN/m3	1.1	0.18	0.2		0.0
W_9	OoP Ext Timber Framing	below sill	7.58		0.20		x	0.35	kPa	0.5	0.18	0.1		0.0
w_{10}	OoP Ext Timber Framing		3.05		1.18		x	0.35	kPa	1.3	0.18	0.2		0.0
W_{11}	Internal Timber Framing	OoP	37.45		1.18		x	0.25	kPa	11.0	0.18	2.0		0.0
w_{12}	Internal Timber Framing	in-plane	51.85		3.18		x	0.25	kPa	41.2	0.18	7.4		0.0
W_{13}							1							1
W_{14}	Timber Roof	E	5.68	41.90			x	0.40	kPa	95.1	0.18	17.1		0.0
W_{15}	Timber Roof	с	2.90	13.15			x	0.40	kPa	15.3	0.18	2.7		0.0
W_{16}	Timber Roof	LW	2.90	3.30			x	0.40	kPa	3.8	0.18	0.7		0.0
W_{17}														
W_{18}														
W_{19}														
w ₂₀														
W_{21}														
w ₂₂														
W_{23}														
w_{24}														
W_{25}														
w ₂₆														
w ₂₇														
w_{28}														
w ₂₉														
w_{30}														
W_{31}														
W_{32}														
w_{33}														
										192	F(kN) =	34.5	0.0	0.0
	Ground Floor	Summary	kN	Timber Bracing - Ground Fl Element	oor Length	Height	Foundation type	Capacity (kN/m)	Capacity (kN)	1				
	Weight V*	192 34.5	кN kN	Element Ex.Ply1	Length 2.40	Height 2.40		Capacity (kN/m) 6.50	Lapacity (KN) 15.60	-				
	Height to COM	0.0	m (Weighted Average)	EP1	1.36	2.40		6.75	9.18					
	Bending Moment	0.0	kNm	Ex.Ply1	0.80	2.40		6.50	5.20					
				EP1	1.20	2.40		6.75	8.10					
				Ex.Ply2	0.95	2.40) Concrete	7.40	7.03					
1							1							
								Total Capacity	45.1					
1								Demand	34.5					
1									100%	%NBS (IL2)				

Seismic Demand Calculations Gridline C - Ground Floor


BATCHELAR					Alexandra Service	e Centre	
R MCDOUGALL					1 Dunorling St		
					Alexandra		
					Dunorling Street	Block	
Wanaka Office: Level 3, 99 Ardmore Street	Phone: (03) 443 4531	www.bmconsult.co.nz	www.bmconsult.co.nz		1708-2227A	Aug-23	WH
Subject:				Seismic Demand Calculations Gridline D			

Material	μ	C _d (T)	NBS%	C _d (T) (Design)
Steel	1.25	0.37	100%	0.37
Timber Bracing	3.5	0.18	100%	0.18

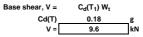
Element Properties Used in Demand Calculations

Material	w	eight
URM Wall Veneer	18.00	kN/m3
Timber Roof	0.40	kPa
Timber Floor	0.40	kPa
Floor Live Load	0.45	kPa
In Plane External Timber Frame	0.35	kPa
Glazing	0.25	kPa
Internal Timber Framing	0.25	kPa
Ext Timber Framing	0.35	kPa

quivalent Static N	lethod	Bracing Type	Timber Bracing				
level i	G _i [kN]	Σψ _E Q _i	W _i [kN]	h i[m]	Wihi	F _i [kN]	ΣF [kN]
2	53.5	0.0	53.5	8.48	453	#VALUE!	#VALUE!
1	0.0	0.0		3.35	#VALUE!	#VALUE!	#VALUE!
totals	53.5	0.0	53.5		#VALUE!	#VALUE!	#VALUE
totals	53.5	0.0	53.5		#VALUE!	#VALUE!	#VALUE

Bracing Line Tributary Width	4.4	m
Building Centre Width	11.6	m
Building Centre Length	15.8	m
Ground Floor Height	2.35	m
Sill Height	0.825	m
Ridge Height	5.7	m

	TCHELAR DOUGALL NSULTING TURAL & CIVIL ENGINEERS	51 (02) 417 177 1									1 Dunorling Alexandra Dunorling St	reet Block	
naka Office: Level 3, 99 Ardmore 5 Subject:	Street	Phone: (03) 443 4531	www.bmconsult.co.nz		Seismic Demand	Calculations Gridline D -	Ground Floor				1708-2227A	Aug-23	W
Ground Floor													
Bracing Type:	Timber Bracing	with µ=	3.50	and $C_d(T) =$	0.18	g							
Select Load Type	Description	Length (m)	Width (m)	Depth/Height (m)	Number of, #		Weight	Units	Element Weight	Cd(T)	Force	Height to CON	
Internal Timber Framing	GL B In-plane	11.06		2.53	0.80	x	0.25	kPa	(kN) 5.59	(g) 0.18	(kN) 1.0	(m)	(kN 0.
Glazing		5.40		1.18		x	0.25	kPa	1.6	0.18	0.3		0.
									-				
Ext Timber Framing	below sill	4.40		0.20		x	0.35	kPa	0.3	0.18	0.1		0
URM Wall Veneer	full height	3.00	0.10	1.18	0.90	x	18.00	kN/m3	5.7	0.18	1.0		0.
Internal Timber Framing	OoP	6.40		4.83	0.85	x	0.25	kPa	6.6	0.18	1.2		0.
		0.10			0.00	A	0.20		0.0	0.10			0.
Timber Roof Timber Roof		4.40	16.60			x	0.40	kPa	29.2	0.18	5.3		0.
Timber Roof	porch	2.50	4.50			x	0.40	kPa	4.5	0.18	0.8		0
									53	F(kN) =	9.6	0.0	0.
Ground Floor Weight	Summary 53	kN	Timber Bracing - Ground Fle Element		Height	Foundation type	Capacity (kN/m)	Capacity (kN)	1				
V*	9.6	kN	BL1-H	2.20		Concrete	5.2		1				
Height to COM	0.0 0.0	m (Weighted Average) kNm											
Bending Moment	0.0	KINITI											
			L				Total Capacity	11.6					
							Demand		kN KNDS (II 2)				
								100%	%NBS (IL2)				


BATCHELAR					Alexandra Service	Centre	
R MCDOUGALL					1 Dunorling St		
					Alexandra		
					Dunorling Street	Block	
Wanaka Office: Level 3, 99 Ardmore Street	Phone: (03) 443 4531	www.bmconsult.co.nz	www.bmconsult.co.nz		1708-2227A	Aug-23	WH
Subject:				Seismic Demand Calculations Gridline E			

Material	μ	C _d (T)	NBS%	C _d (T) (Design)
Steel	1.25	0.37	100%	0.37
Timber Bracing	3.5	0.18	100%	0.18

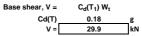
Element Properties Used in Demand Calculations

Material	w	/eight
URM Wall Veneer	18.00	kN/m3
Timber Roof	0.40	kPa
Timber Floor	0.40	kPa
Floor Live Load	0.45	kPa
In Plane External Timber Frame	0.35	kPa
Glazing	0.25	kPa
Internal Timber Framing	0.25	kPa
Ext Timber Framing	0.35	kPa

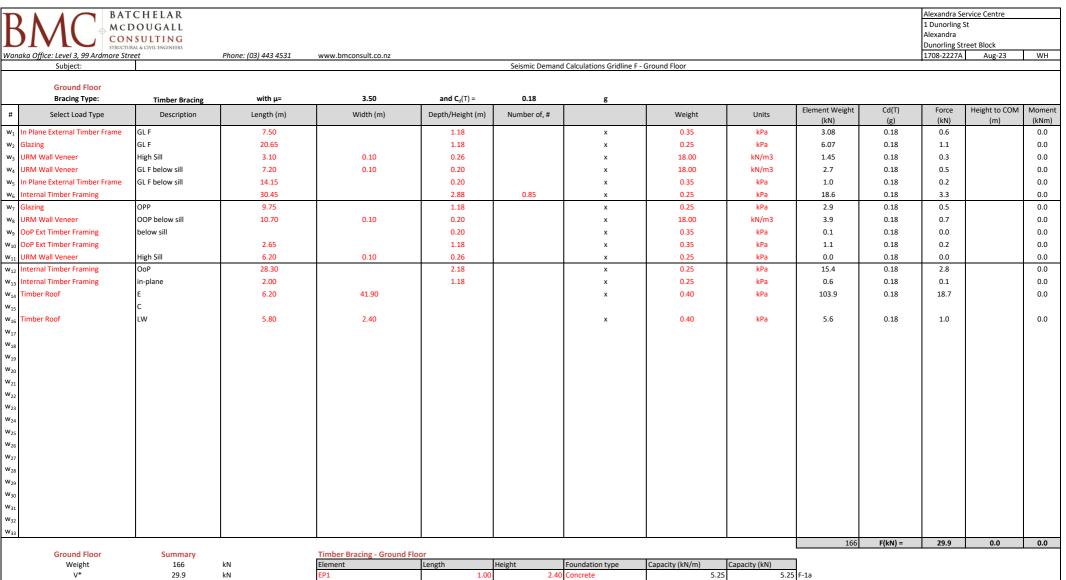
quivalent Static N	lethod	Bracing Type	Timber Bracing				
level i	G _i [kN]	Σψ _E Q _i	W _i [kN]	h i[m]	Wihi	F _i [kN]	ΣF [kN]
2	53.5	0.0	53.5	8.48	453	#VALUE!	#VALUE
1	0.0	0.0		3.35	#VALUE!	#VALUE!	#VALUE
totals	53.5	0.0	53.5		#VALUE!	#VALUE!	#VALUE

0		
Bracing Line Tributary Width	4.4	m
Building Centre Width	11.6	m
Building Centre Length	15.8	m
Ground Floor Height	2.35	m
Sill Height	0.825	m
Ridge Height	5.7	m

SMC /+ MC	TCHELAR CDOUGALL NSULTING TURAL & CIVIL ENGINEERS										1 Dunorling Alexandra Dunorling St		
naka Office: Level 3, 99 Ardmore		Phone: (03) 443 4531	www.bmconsult.co.nz				0				1708-2227A		W
Subject:					Seismic Demand	Calculations Gridline E	- Ground Floor						
Ground Floor													
Bracing Type:	Timber Bracing	with µ=	3.50	and C _d (T) =	0.18	g			Element Weight	Cd(T)	Force	Height to CON	A Mom
Select Load Type	Description	Length (m)	Width (m)	Depth/Height (m)	Number of, #		Weight	Units	(kN)	(g)	(kN)	(m)	(kNi
Internal Timber Framing	GL B In-plane	11.06		2.53	0.80	x	0.25	kPa	5.59	0.18	1.0		0.
Glazing		5.40		1.18		x	0.25	kPa	1.6	0.18	0.3		0.
Ext Timber Framing	below sill	4.40		0.20		x	0.35	kPa	0.3	0.18	0.1		0.
URM Wall Veneer	full height	3.00	0.10	1.18	0.90	х	18.00	kN/m3	5.7	0.18	1.0		0.
Internal Timber Framing	ОоР	6.40		4.83	0.85	x	0.25	kPa	6.6	0.18	1.2		0.
internal finiber framing	oor	0.40		4.05	0.05	^	0.25	Kr d	0.0	0.15	1.2		0.
Timber Roof		4.40	16.60			х	0.40	kPa	29.2	0.18	5.3		0.
Timber Roof	porch	2.50	4.50			x	0.40	kPa	4.5	0.18	0.8		0
									53	F(kN) =	9.6	0.0	0.
Ground Floor	Summary		Timber Bracing - Ground Fl										
Weight V*		kN kN	Element BL1-H	Length 2.20		Foundation type Concrete	Capacity (kN/m) 5.25	Capacity (kN) 5 11.55	-				
Height to COM		m (Weighted Average)		2.20	2.40	concrete	5.2.	, 11.55					
Bending Moment	0.0	kNm											
]				
							Total Capacity	11.6					
							Demand		kN %NBS (IL2)				
								100/0	/// 03 (122)				


BATCHELAR					Alexandra Service	Centre	
R MCDOUGALL					1 Dunorling St		
					Alexandra		
					Dunorling Street	Block	
Wanaka Office: Level 3, 99 Ardmore Street	Phone: (03) 443 4531	www.bmconsult.co.nz	www.bmconsult.co.nz		1708-2227A	Aug-23	WH
Subject:				Seismic Demand Calculations Gridline F			

Material	μ	C _d (T)	NBS%	C _d (T) (Design)
Steel	1.25	0.37	100%	0.37
Timber Bracing	3.5	0.18	100%	0.18

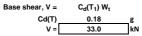

Element Properties Used in Demand Calculations

Material	w	/eight
URM Wall Veneer	18.00	kN/m3
Timber Roof	0.40	kPa
Timber Floor	0.40	kPa
Floor Live Load	0.45	kPa
In Plane External Timber Frame	0.35	kPa
Glazing	0.25	kPa
Internal Timber Framing	0.25	kPa
OoP Ext Timber Framing	0.35	kPa

Equivalent Static M	ethod	Bracing Type	Timber Bracing				
level i	G _i [kN]	Σψ _E Q _i	W _i [kN]	h i [m]	Wihi	F _i [kN]	ΣF [kN]
2	166.3	0.0	166.3	8.48	1410	#VALUE!	#VALUE!
1	0.0	0.0		3.35	#VALUE!	#VALUE!	#VALUE!
totals	166.3	0.0	166.3		#VALUE!	#VALUE!	#VALUE!

Bracing Line Tributary Width	6.2	m
Building West Width	13.3	m
Building Length	41.3	m
Ground Floor Height	2.35	m
Sill Height	0.825	m
Ridge Height	5.7	m
Part Trib width 1	2.9	m

Weight	166	kN	Element	Length	Height	Foundation type	Capacity (kN/m)	Capacity (kN)	
V*	29.9	kN	EP1	1.00	2.40	Concrete	5.25	5.25	5 F-1a
Height to COM	0.0	m (Weighted Average)	EP1	1.60	2.40	Concrete	6.75	10.80) F-2a
Bending Moment	0.0	kNm	EP1	1.20	2.40	Concrete	6.75	8.10	0 F-2b
			EP1	0.60	2.40	Concrete	5.25	3.15	5 F-3a
			EP1	1.20	2.40	Concrete	6.75	8.10	0 F-4a
			Ex.Ply1	0.90	2.40	Concrete	5.25	4.73	3 F-50
			BL1-H	2.20	2.40	Concrete	5.25	11.55	F-5a ز
			BL1-H	2.20	2.40	Concrete	5.25	11.55	5 F-5b
							Total Capacity	63.2	2 kN
							Demand	29.9	
								100%	%NBS (IL2


BATCHELAR					Alexandra Service	Centre	
R N C D O U G A L					1 Dunorling St		
					Alexandra		
					Dunorling Street B	lock	
Wanaka Office: Level 3, 99 Ardmore Street	Phone: (03) 443 4531	www.bmconsult.co.nz	www.bmconsult.co.nz		1708-2227A	Aug-23	WH
Subject:				Seismic Demand Calculations Gridline H			

Material	μ	C _d (T)	NBS%	C _d (T) (Design)
Steel	1.25	0.37	100%	0.37
Timber Bracing	3.5	0.18	100%	0.18

Element Properties Used in Demand Calculations

Material	w	/eight
URM Wall Veneer	18.00	kN/m3
Timber Roof	0.40	kPa
Timber Floor	0.40	kPa
Floor Live Load	0.45	kPa
In Plane External Timber Frame	0.35	kPa
Glazing	0.25	kPa
Internal Timber Framing	0.25	kPa
Ext Timber Framing	0.35	kPa

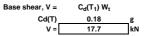
Equivalent Static Mo	ethod	Bracing Type	Timber Bracing				
level i	G _i [kN]	ΣψεQi	W _i [kN]	h i [m]	Wihi	F _i [kN]	ΣF [kN]
2	183.5	0.0	183.5	8.48	1556	#VALUE!	#VALUE!
1	0.0	0.0		3.35	#VALUE!	#VALUE!	#VALUE!
1-1-1-	400.5		400.5		41/41 1151	#)/ALLIEL	41/411151
totals	183.5	0.0	183.5		#VALUE!	#VALUE!	#VALUE!

Building Dimensions

Bracing Line Tributary Width	6.65
Building West Width	13.3
Building Length	41.3
Ground Floor Height	2.35
Sill Height 1	0.825
Ridge Height	5.7
Sill Height 2	1.425

0.2 0.46

2 N /		TCHELAR Dougall										1 Dunorling	ervice Centre St	
JIVI		NSULTING										Alexandra		
	STRUCTU	URAL & CIVIL ENGINEERS										Dunorling St		1
	vel 3, 99 Ardmore St. bject:	reet	Phone: (03) 443 4531	www.bmconsult.co.nz		Seismic Demand	Calculations Gridline	- Ground Floor				1708-2227A	Aug-23	W
	ound Floor													
	acing Type:	Timber Bracing	with µ=	3.50	and C _d (T) =	0.18	g				- 1/ - 1			
Sele	ct Load Type	Description	Length (m)	Width (m)	Depth/Height (m)	Number of, #		Weight	Units	Element Weight (kN)	Cd(T) (g)	Force (kN)	Height to COM (m)	1 Mom (kNi
Internal Timb	er Framing	GL H In-plane	33.96		2.53	0.80	x	0.25	kPa	17.15	0.18	3.1		0.
2 Ext Timber Fr	aming	GLB upper	31.50		2.10	0.80	x	0.35	kPa	18.52	0.18	3.3		0.
3														
ı														
i Fut Timber Fr			1.25		1.10			0.25	L.D	0.5	0.10	0.1		
Ext Timber Fr	aming				1.18		x	0.35	kPa	0.5	0.18	0.1		0.
Glazing			12.05		1.18		x	0.25	kPa	3.5	0.18	0.6		0.
URM Wall Ve		below sill	11.80	0.10	0.20		x	18.00	kN/m3	4.4	0.18	0.8		0.
URM Wall Ve	neer	sill 2	1.50	0.10	0.26		x	18.00	kN/m3	0.7	0.18	0.1		0.
10 11 Internal Timb	er Framing	OoP	56.95		1.18	0.85	x	0.25	kPa	14.2	0.18	2.6		0.
12														
13														
4 Timber Roof			7.05	41.90			x	0.40	kPa	118.2	0.18	21.3		0.
5 Timber Floor			3.98	4.00			x	0.40	kPa	6.4	0.18	1.1		0
6														
7														
18														
19														
20														
21														
22														
23														
4														
25														
26														
27														
28														
29														
80														
31										184	F(kN) =	33.0	0.0	0.0
	ound Floor	Summary		Timber Bracing - Ground Flo										
	Weight V*	184 33.0	kN kN	Element EP1	Length 3.70	Height 2.40	Foundation type Concrete	Capacity (kN/m) 6.75	Capacity (kN) 5 24.98					
Hei	ight to COM	0.0	m (Weighted Average)	EP1	3.00	2.40	Concrete	6.75						
	ding Moment	0.0	kNm	EP1	4.50	2.40	Concrete	6.75						
				EP1	3.80	2.40		6.75						
							I	Total Canasity	101.2	LN				
								Total Capacity	101.3					
								Demand	33 0	kN				
								Demand	33.0 100%	kN %NBS (IL2)				


BATCHELAR					Alexandra Service Co	entre	
R MCDOUGALL					1 Dunorling St		
					Alexandra		
					Dunorling Street Blo	ck	
Wanaka Office: Level 3, 99 Ardmore Street	Phone: (03) 443 4531	www.bmconsult.co.nz	www.bmconsult.co.nz		1708-2227A	Aug-23	WH
Subject:				Seismic Demand Calculations Gridline I			

Material	μ	C _d (T)	NBS%	C _d (T) (Design)
Steel	1.25	0.37	100%	0.37
Timber Bracing	3.5	0.18	100%	0.18

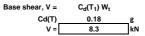
Element Properties Used in Demand Calculations

Material	w	/eight
URM Wall Veneer	18.00	kN/m3
Timber Roof	0.40	kPa
Timber Floor	0.40	kPa
Floor Live Load	0.45	kPa
In Plane External Timber Frame	0.35	kPa
Glazing	0.25	kPa
Internal Timber Framing	0.25	kPa
OoP Ext Timber Framing	0.35	kPa

Equivalent Static M	lethod	Bracing Type	Timber Bracing				
level i	G _i [kN]	Σψ _E Q _i	W _i [kN]	h i [m]	Wihi	F _i [kN]	ΣF [kN]
2	98.4	0.0	98.4	8.48	835	#VALUE!	#VALUE!
1	0.0	0.0		3.35	#VALUE!	#VALUE!	#VALUE!
totals	98.4	0.0	98.4		#VALUE!	#VALUE!	#VALUE!

· · · · · · · · · · · · · · · · · · ·		
Bracing Line Tributary Width	1.975	m
Building West Width	13.3	m
Building Length	41.3	m
Ground Floor Height	2.35	m
Sill Height	0.825	m
Ridge Height	5.7	m

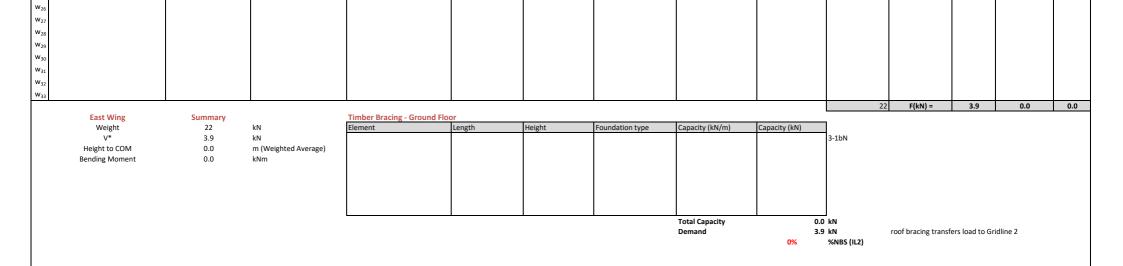
	C H E L A R D O U G A L L N S U L T I N G IRAL & CIVIL ENGINEERS										1 Dunorling Alexandra Dunorling St	reet Block	1
naka Office: Level 3, 99 Ardmore Str Subject:	reet	Phone: (03) 443 4531	www.bmconsult.co.nz		Seismic Deman	d Calculations Gridline I	- Ground Floor				1708-2227A	Aug-23	WH
bubjetti	1				Scisinie Scinari		oround ricor						
Ground Floor			2.50		0.40	_							
Bracing Type:	Timber Bracing	with µ=	3.50	and C _d (T) =	0.18	g			Element Weight	Cd(T)	Force	Height to COM	Mom
Select Load Type	Description	Length (m)	Width (m)	Depth/Height (m)	Number of, #		Weight	Units	(kN)	(g)	(kN)	(m)	(kNr
In Plane External Timber Frame	GLI	12.84		1.18		x	0.35	kPa	5.28	0.18	1.0		0.0
Glazing	GLI	28.46		1.18		x	0.25	kPa	8.36	0.18	1.5		0.0
URM Wall Veneer	GL I Full Height	5.40	0.10	1.18		x	18.00	kN/m3	11.71	0.18	2.1		0.0
URM Wall Veneer	GL I below sill	34.50	0.10	0.20		x	18.00	kN/m3	12.7	0.18	2.3		0.0
In Plane External Timber Frame	GL I below sill	6.80		0.20		x	0.35	kPa	0.5	0.18	0.1		0.0
OoP Ext Timber Framing	full height	2.00		1.18		x	0.35	kPa	0.8	0.18	0.1		0.0
Glazing	OOP	3.95	0.10	1.18		x	0.25	kPa	1.2	0.18	0.2		0.0
URM Wall Veneer OoP Ext Timber Framing	below sill below sill	3.95 3.95	0.10	0.20 0.20		x	18.00 0.35	kN/m3 kPa	1.5 0.3	0.18 0.18	0.3 0.0		0.0
	walkway	3.95		1.18		×	0.35	кРа kPa	0.3 3.5	0.18	0.0		0.0
Glazing Internal Timber Framing	OoP	11.50		1.18		x	0.25	kPa	5.9	0.18	1.1		0.0
Internal Timber Framing	in-plane	0.00		1.30		×	0.25	kPa	0.0	0.18	0.0		0.0
	in plane	0.00		1.75		^	0.25	Ki u	0.0	0.10	0.0		0.
Timber Roof		2.48	41.90			x	0.40	kPa	41.5	0.18	7.5		0.0
Timber Roof		5.95	2.20			x	0.40	kPa	5.2	0.18	0.9		0.
1													
									98	F(kN) =	17.7	0.0	0
Ground Floor	Summary		Timber Bracing - Ground F	loor					50	. (
Weight	98	kN	Element	Length	Height	Foundation type	Capacity (kN/m)	Capacity (kN)					
V*	17.7	kN	Ex.Ply1	2.30	2.40		6.5						
Height to COM	0.0 0.0	m (Weighted Average) kNm	Ex.Ply1	2.90	2.40	Concrete	6.5	0 18.85					
Bending Moment	0.0	NNIII											
							Total Canasity	33.8	LN				
							Total Capacity Demand	33.8 17.7					
									%NBS (IL2)				
									-				


BATCHELAR					Alexandra Service	Centre	
R MCDOUGALL					1 Dunorling St		
					Alexandra		
					Dunorling Street	Block	
Wanaka Office: Level 3, 99 Ardmore Street	Phone: (03) 443 4531 ww	ww.bmconsult.co.nz	www.bmconsult.co.nz		1708-2227A	Aug-23	WH
Subject:				Seismic Demand Calculations Gridline 1			

Material	μ	C _d (T)	NBS%	C _d (T) (Design)
Steel	1.25	0.37	100%	0.37
Timber Bracing	3.5	0.18	100%	0.18

Element Properties Used in Demand Calculations

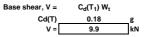
Material	w	/eight
URM Wall Veneer	18.00	kN/m3
Timber Roof	0.40	kPa
Timber Floor	0.40	kPa
Floor Live Load	0.45	kPa
In Plane External Timber Frame	0.35	kPa
Glazing	0.25	kPa
Internal Timber Framing	0.25	kPa
Ext Timber Framing	0.35	kPa


Equivalent Static M	lethod	Bracing Type	Timber Bracing				
level i	G _i [kN]	Σψ _E Q _i	W _i [kN]	h i [m]	Wihi	F _i [kN]	ΣF [kN]
2	24.7	0.0	24.7	8.48	209	6.4	6.4
1	21.7	0.0	21.7	3.35	73	2.0	8.3
totals	46.3	0.0	46.3		282	8.3	8.3

W Bracing Line Tributary Width	2.25	m
Building West Width	41.3	m
Building Length	13.9	m
Ground Floor Height	2.35	m
Sill Height	0.825	m
Ridge Height	5.7	m
E Bracing Line Tributary Width	2.25	m

B		ATCHELAR CDOUGALL DNSULTING ICTURAL & CIVIL ENGINEERS										Alexandra S 1 Dunorling Alexandra Dunorling S		
anak	ka Office: Level 3, 99 Ardmore		Phone: (03) 443 4531	www.bmconsult.co.nz								1708-2227A	Aug-23	WH
	Subject:					Seismic Deman	d Calculations Gridlin	e 1 - West Wing						
	West Wing Bracing Type:	Timber Bracing	with µ=	3.50	and $C_d(T) =$	0.18	g							
#	Select Load Type	Description	Length (m)	Width (m)	Depth/Height (m)	Number of, #		Weight	Units	Element Weight (kN)	Cd(T) (g)	Force (kN)	Height to COM (m)	Mome (kNn
v ₁ E)	xt Timber Framing	GL 1 In-plane	0.80		1.18	1.00	x	0.35	kPa	0.33	0.18	0.1	()	0.0
/2 G	ilazing	GL 1 In-plane	9.20		0.88	1.00	x	0.25	kPa	2.01	0.18	0.4		0.0
3 E)	xt Timber Framing	GL 1 In-plane	9.20		0.30	1.00	x	0.35	kPa	0.97	0.18	0.2		0.0
/ ₄														
/ ₅														
6														
/7 E)	xt Timber Framing	OoP Ext	2.60		1.18	1.00	x	0.35	kPa	1.1	0.18	0.2	1	0.0
/8 G	ilazing	OoP Ext	1.90		0.88	1.00	x	0.25	kPa	0.4	0.18	0.1	1	0.0
/9 E)	xt Timber Framing	OoP Ext	1.90		0.30	1.00	x	0.35	kPa	0.2	0.18	0.0	1	0.0
/10														
/ ₁₁ In	nternal Timber Framing	OoP	6.75		2.00	0.85	x	0.25	kPa	2.9	0.18	0.5		0.0
112 G	ilazing	in-plane	6.40		1.18	0.80	x	0.25	kPa	1.5	0.18	0.3		0.0
/13														
14 Ti	imber Roof	area 1	2.75	13.90			x	0.40	kPa	15.3	0.18	2.8		0.0
15														
16														
17														
18														
/19														
/20														
/21														
/22														
/ ₂₃														
/24														
/ ₂₅														
/ ₂₆														
/ ₂₇														
/ ₂₈														
/ ₂₉														
/ ₃₀														
/31														
										25	F(kN) =	4.4	0.0	0.0
	West Wing Weight	Summary 25	kN	Timber Bracing - Ground Flo Element		Height	Foundation type	Capacity (kN/m)	Capacity (kN)	-				
	veight V*	4.4	kn kN	Ex GIB 1 side & weatherboard		2.40	Concrete	1.30		04 3-1aS				
	Height to COM	0.0	m (Weighted Average)		0.00	2.10		100						
	Bending Moment	0.0	kNm											
									1					
								Total Carit-:	<u> </u>					
								Total Capacity Demand		.0 kN .4 kN	roof bracing trans	fers load to G	ridline 2	
								Demanu	23%	%NBS (IL2)	i ooi biacilig tidlis	ners iodu to G	nume z	

B		ATCHELAR CDOUGALL DNSULTING CTURAL & CVILLENGINEERS			East Wing							Alexandra Se 1 Dunorling Alexandra Dunorling St		
Vana	ka Office: Level 3, 99 Ardmore		Phone: (03) 443 4531 v	www.bmconsult.co.nz								1708-2227A		W
	Subject:					Seismic Deman	d Calculations Gridline 1	- East Wing						
	East Wing Bracing Type:	Timber Bracing	with µ=	3.50	and $C_d(T) =$	0.18	g							
#	Select Load Type	Description	Length (m)	Width (m)	Depth/Height (m)	Number of, #		Weight	Units	Element Weight (kN)	Cd(T) (g)	Force (kN)	Height to COM (m)	1 Mo (ki
V1 1	Ext Timber Framing	GL 1 In-plane	0.80		1.18	1.00	x	0.35	kPa	0.33	0.18	0.1	()	(
v2	Glazing	GL 1 In-plane	12.50		0.88	1.00	x	0.25	kPa	2.73	0.18	0.5		
N ₃	Ext Timber Framing	GL 1 In-plane	12.50		0.30	1.00	x	0.35	kPa	1.31	0.18	0.2		
w ₄														
w ₅														
w ₆														
w7	Ext Timber Framing	OoP Ext	2.70		1.18	1.00	x	0.35	kPa	1.1	0.18	0.2		
w ₈	Glazing	OoP Ext	1.80		0.88	1.00	x	0.25	kPa	0.4	0.18	0.1		
w ₉	Ext Timber Framing	OoP Ext	1.80		0.30	1.00	x	0.35	kPa	0.2	0.18	0.0		
N ₁₀														
N ₁₁	nternal Timber Framing	OoP	1.13		1.18	1.00	x	0.25	kPa	0.3	0.18	0.1		
N ₁₂	nternal Timber Framing	in-plane	0.00		1.18	1.00	x	0.25	kPa	0.0	0.18	0.0		
N ₁₃														
N ₁₄	Fimber Roof	area 1	2.75	13.90			x	0.40	kPa	15.3	0.18	2.8		
N ₁₅														
N ₁₆														
N ₁₇														
N ₁₈														
N ₁₉														
N ₂₀														1
N ₂₁														1
N ₂₂														1
N ₂₃														
N ₂₄														1
N ₂₅														


BATCHELAR					A	Alexandra Service Ce	ntre	
R A A C D D C D D D D D D D D D D					1	1 Dunorling St		
					A	Alexandra		
					C	Dunorling Street Blo	ck .	
Wanaka Office: Level 3, 99 Ardmore Street	Phone: (03) 443 4531	www.bmconsult.co.nz	www.bmconsult.co.nz		1	1708-2227A	Aug-23	WH
Subject:				Seismic Demand Calculations Gridline 2				

Material	μ	C _d (T)	NBS%	C _d (T) (Design)
Steel	1.25	0.37	100%	0.37
Timber Bracing	3.5	0.18	100%	0.18

Element Properties Used in Demand Calculations

Material	w	/eight
URM Wall Veneer	18.00	kN/m3
Timber Roof	0.40	kPa
Timber Floor	0.40	kPa
Floor Live Load	0.45	kPa
In Plane External Timber Frame	0.35	kPa
Glazing	0.25	kPa
Internal Timber Framing	0.25	kPa
Ext Timber Framing	0.35	kPa

Equivalent Static M	lethod	Bracing Type	Timber Bracing				
level i	G _i [kN]	ΣψΕQi	W _i [kN]	h i [m]	Wihi	F _i [kN]	ΣF [kN]
2	28.9	0.0	28.9	8.48	245	7.5	7.5
1	26.3	0.0	26.3	3.35	88	2.4	9.9
			55.0				
totals	55.2	0.0	55.2		333	9.9	9.9

W Bracing Line Tributary Width	3.4	m
Building West Width	41.3	m
Building Length	13.3	m
Ground Floor Height	2.35	m
Sill Height	0.825	m
Ridge Height	5.7	m
E Bracing Line Tributary Width	3.4	m

R	\ ∧ / ('↓м	ATCHELAR CDOUGALL										Alexandra Se 1 Dunorling Alexandra	ervice Centre St	
J		ONSULTING JCTURAL & CIVIL ENGINEERS										Dunorling St	reet Block	
ana	ika Office: Level 3, 99 Ardmore		Phone: (03) 443 4531	www.bmconsult.co.nz								1708-2227A		W
	Subject:					Seismic Deman	d Calculations Gridlin	e 2 - West Wing						
	West Wing Bracing Type:		with µ=	3.50	and $C_d(T) =$	0.18	~							
#	Select Load Type	Timber Bracing Description	Length (m)	Width (m)	Depth/Height (m)	Number of, #	g	Weight	Units	Element Weight	Cd(T)	Force	Height to CON	I Mom
	Internal Timber Framing	GL 2 In-plane	5.50	Width (iii)	1.18	0.85		0.25	kPa	(kN) 1.37	(g) 0.18	(kN) 0.2	(m)	(kN 0.
	Ext Timber Framing	GL 2 In-plane	1.00		1.18	1.00	x x	0.25	kPa	0.41	0.18	0.2		0.
	Glazing	GL 2 In-plane	3.60		0.88	1.00	×	0.25	kPa	0.79	0.18	0.1		0.
	Ext Timber Framing	GL 2 In-plane	3.60		0.30	1.00	×	0.35	kPa	0.75	0.18	0.1		0.
	Ext finiber framing	GL 2 III-plaile	5.00		0.50	1.00	~	0.55	KFd	0.4	0.18	0.1		0.
5														
	Ext Timber Framing	OoP Ext	3.00		1.18	1.00	×	0.35	kPa	1.2	0.18	0.2		0.0
		OOP Ext	3.80		0.88	1.00	×	0.35	kPa	0.8	0.18	0.2	1	0.0
	Glazing Ext Timber Framing						x						1	
	Ext Timber Framing	OoP Ext	3.80		0.30	1.00	x	0.35	kPa	0.4	0.18	0.1		0.
0	Internal Timber Francis-	0.00	C 00		2.00	0.05		0.05	1.0-	2.0	0.10	0.5		
	Internal Timber Framing	OoP	6.80		2.00	0.85	x	0.25	kPa	2.9	0.18	0.5	1	0.
	Internal Timber Framing	in-plane	0.00		2.00	0.80	x	0.25	kPa	0.0	0.18	0.0	1	0.
13														
	Timber Roof	area 1	3.40	13.90			x	0.40	kPa	18.9	0.18	3.4		0
	Ext Timber Framing	roof wall	4.90		1.00	1.00	x	0.35	kPa	1.7	0.18	0.3		0
5														
.7														
18														
19														
20														
21														
2														
3														
4														
25														
26														
7														
8														
29														
30														
31														
										29	9 F(kN) =	5.2	0.0	0.
	West Wing	Summary		Timber Bracing - Ground Fl										
	Weight	29	kN	Element		Height	Foundation type	Capacity (kN/m)	Capacity (kN)	2.1-6				
	V* Height to COM	5.2 0.0	kN m (Weighted Average)	EP1	1.40	2.40	Concrete	6.75	9.45	2-1aS				
	Bending Moment	0.0	kNm											
]				
								Total Capacity Demand		kN kN				
									100%	%NBS (IL2)				
								Grid 1 Demand		kN	Transferred throu	igh cross braci	ng and hips	
								Total Demand		kN				
									98%	%NBS (IL2)				

East Wing

www.bmconsult.co.nz

Phone: (03) 443 4531

Alexandra Service Centre 1 Dunorling St

Alexandra Dunorling Street Block

Aug-23

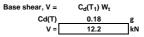
WH

1708-2227A

anaka Office: Level 3, 99 Ard/ Subject:

East Wing Bracing Type: with µ= 3.50 and $C_d(T) =$ 0.18 **Timber Bracing** g Cd(T) Height to COM Moment Element Weight Force # Width (m) Units Select Load Type Description Length (m) Depth/Height (m) Number of, # Weight (kN) (kN) (m) (kNm) (g) W_1 nternal Timber Framing GL 2 In-plane 4.30 2.00 1.00 х 0.25 kPa 2.15 0.18 0.4 0.0 **W**₂ W₃ W_4 W_5 w₆ w₇ Ext Timber Framing OoP Ext 1.65 1.18 1.00 0.35 kPa 0.7 0.18 0.1 0.0 х OoP Ext W_8 Glazing 5.15 0.88 1.00 0.25 kPa 1.1 0.18 0.2 0.0 х OoP Ext W₉ Ext Timber Framing 5.15 kPa 0.5 0.18 0.1 0.0 0.30 1.00 х 0.35 W₁₀ Internal Timber Framing OoP 3.40 2.00 1.00 0.25 kPa 1.7 0.18 0.3 0.0 W₁₁ х W₁₂ Internal Timber Framing in-plane 0.00 2.00 1.00 0.25 kPa 0.0 0.18 0.0 0.0 х W₁₃ w₁₄ Timber Roof area 1 3.40 13.90 0.40 kPa 18.9 0.18 3.4 0.0 х w₁₅ Ext Timber Framing 3.40 1.00 1.00 0.35 kPa 1.2 0.18 0.2 0.0 х W₁₆ W₁₇ W₁₈ W₁₉ w₂₀ w₂₁ w₂₂ W₂₃ w₂₄ W₂₅ w₂₆ w₂₇ w₂₈ W₂₉ W₃₀ W₃₁ W₃₂ W₃₃ 26 F(kN) = 4.7 0.0 0.0 East Wing **Timber Bracing - Ground Floor** Summary Element Height Foundation type Capacity (kN/m) Capacity (kN) Weight 26 kN Length V* 4.7 kN EP1 8.96 3-1bN Concrete 2.80 3.2 2.70 Height to COM 0.0 m (Weighted Average) Bending Moment 0.0 kNm Total Capacity 9.0 kN Demand 4.7 kN 100% %NBS (IL2) Grid 1 Demand 3.9 kN Transferred through cross bracing and hips Total Demand 8.6 kN 100% %NBS (IL2)

Seismic Demand Calculations Gridline 2 - East Wing


BATCHELAR					Alexandra Service	Centre	
R MCDOUGALL					1 Dunorling St		
					Alexandra		
					Dunorling Street	Block	
Wanaka Office: Level 3, 99 Ardmore Street	Phone: (03) 443 4531	www.bmconsult.co.nz	www.bmconsult.co.nz		1708-2227A	Aug-23	WH
Subject:				Seismic Demand Calculations Gridline 3			

Material	μ	C _d (T)	NBS%	C _d (T) (Design)
Steel	1.25	0.37	100%	0.37
Timber Bracing	3.5	0.18	100%	0.18

Element Properties Used in Demand Calculations

Material	w	/eight
URM Wall Veneer	18.00	kN/m3
Timber Roof	0.40	kPa
Timber Floor	0.40	kPa
Floor Live Load	0.45	kPa
In Plane External Timber Frame	0.35	kPa
Glazing	0.25	kPa
Internal Timber Framing	0.25	kPa
Ext Timber Framing	0.35	kPa

Equivalent Static M	lethod	Bracing Type	Timber Bracing				
level i	G _i [kN]	Σψ _E Q _i	W _i [kN]	h i [m]	Wihi	F _i [kN]	ΣF [kN]
2	38.5	0.0	38.5	8.48	327	9.6	9.6
1	29.3	0.0	29.3	3.35	98	2.6	12.2
totals	67.9	0.0	67.9		425	12.2	12.2
lotais	07.9	0.0	07.9		423	12.2	12.2

W Bracing Line Tributary Width	4.4	m
Building West Width	41.3	m
Building Length	13.3	m
Ground Floor Height	2.35	m
Sill Height	0.825	m
Ridge Height	5.7	m
E Bracing Line Tributary Width	3.45	m

К Л Л ('ф м	ATCHELAR CDOUGALL ONSULTING										1 Dunorling Alexandra		
aka Office: Level 3, 99 Ardmore	UCTURAL & CIVIL ENGINEERS	Phone: (03) 443 4531	www.bmconsult.co.nz								Dunorling St 1708-2227A		WH
Subject:		Phone: (05) 445 4551	www.binconsult.co.nz		Seismic Deman	d Calculations Gridline 3	- West Wing				1700-22278	Aug-25	
West Wing													
Bracing Type:	Timber Bracing	with µ=	3.50	and $C_d(T) =$	0.18	g		1 liste	Element Weight	Cd(T)	Force	Height to CON	1 Mom
Select Load Type Internal Timber Framing	Description GL 3 In-plane	Length (m) 3.20	Width (m)	Depth/Height (m)	Number of, # 0.85	x	Weight 0.25	Units kPa	(kN) 0.80	(g) 0.18	(kN) 0.1	(m)	(kNr 0.0
	GL 3 mpiane	3.20		1.10	0.83	X	0.23	KF d	0.80	0.18	0.1		0.0
Ext Timber Framing	OoP Ext	5.25		1.18	1.00	×	0.35	kPa	2.2	0.18	0.4		0.0
Glazing	OoP Ext	9.15		0.88	1.00	×	0.35	kPa	2.2	0.18	0.4		0.0
Ext Timber Framing	OoP Ext	9.15		0.88	1.00	×	0.25	kPa	1.0	0.18	0.4		0.
Exerning	OUT EAL	3.13		0.50	1.00	^	0.55	NF G	1.0	0.10	0.2		0.
Internal Timber Framing	OoP	11.00		2.00	0.85	x	0.25	kPa	4.7	0.18	0.8		0.
Internal Timber Framing	in-plane	0.00		2.00	0.80	x	0.25	kPa	0.0	0.18	0.0		0.
l													1
Timber Roof	area 1	4.40	13.90			x	0.40	kPa	24.5	0.18	4.4		0.
Ext Timber Framing	roof wall	4.40		1.00	1.00	x	0.35	kPa	1.5	0.18	0.3		0
Timber Roof	porch	3.00	1.60			x	0.40	kPa	1.9	0.18 F(kN) =	0.3 6.9	0.0	c
West Wing Weight V* Height to COM Bending Moment	6.9 0.0	kN	Timber Bracing - Ground F Element EP1			Foundation type Concrete	Capacity (kN/m) 6.75	Capacity (kN) 5 13.50	3-1aS				
		L					Total Capacity Demand	6.9	J kN kN %NBS (IL2)				

East Wing

www.bmconsult.co.nz

Phone: (03) 443 4531

Alexandra Service Centre 1 Dunorling St

1708-2227A

Alexandra Dunorling Street Block

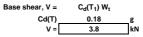
Aug-23

WH

/anaka Office: Level 3, 99 Ar Subject:

East Wing Bracing Type: with µ= 3.50 and $C_d(T) =$ 0.18 **Timber Bracing** g Cd(T) Height to COM Moment Element Weight Force # Width (m) Units Select Load Type Description Length (m) Depth/Height (m) Number of, # Weight (kN) (kN) (m) (kNm) (g) W_1 nternal Timber Framing GL 3 In-plane 4.30 2.00 1.00 х 0.25 kPa 2.15 0.18 0.4 0.0 **W**₂ W₃ W_4 W_5 w₆ w₇ Ext Timber Framing OoP Ext 2.70 1.18 1.00 0.35 kPa 1.1 0.18 0.2 0.0 х OoP Ext W_8 Glazing 4.20 0.88 1.00 0.25 kPa 0.9 0.18 0.2 0.0 х OoP Ext W₉ Ext Timber Framing 4.20 kPa 0.4 0.18 0.1 0.0 0.30 1.00 х 0.35 W₁₀ Internal Timber Framing OoP 5.45 2.00 1.00 0.25 kPa 2.7 0.18 0.5 0.0 W₁₁ х W_{12} Internal Timber Framing in-plane 3.20 2.00 1.00 0.25 kPa 1.6 0.18 0.3 0.0 х W₁₃ W₁₄ Timber Roof area 1 3.45 13.90 0.40 kPa 19.2 0.18 3.5 0.0 х w₁₅ Ext Timber Framing 3.45 1.00 1.00 0.35 kPa 1.2 0.18 0.2 0.0 х W₁₆ W₁₇ W₁₈ W₁₉ w₂₀ w₂₁ w₂₂ W₂₃ w₂₄ W₂₅ w₂₆ w₂₇ w₂₈ W₂₉ w₃₀ W₃₁ W₃₂ W₃₃ 29 F(kN) = 5.3 0.0 0.0 East Wing **Timber Bracing - Ground Floor** Summary Element Height Foundation type Capacity (kN/m) Capacity (kN) Weight 29 kN Length V* 5.3 kN EP1 8.96 3-1bN 2.80 3.20 2.70 Concrete Height to COM 0.0 m (Weighted Average) Bending Moment 0.0 kNm **Total Capacity** 9.0 kN 5.3 kN Demand 100% %NBS (IL2)

Seismic Demand Calculations Gridline 3 - East Wing


BATCHELAR					Alexandra Service C	Centre	-
R A A C D C D U G A L					1 Dunorling St		
					Alexandra		
					Dunorling Street Bl	ock	
Wanaka Office: Level 3, 99 Ardmore Street	Phone: (03) 443 4531	www.bmconsult.co.nz	www.bmconsult.co.nz		1708-2227A	Aug-23	WH
Subject:				Seismic Demand Calculations Gridline 4			

Material	μ	C _d (T)	NBS%	C _d (T) (Design)
Steel	1.25	0.37	100%	0.37
Timber Bracing	3.5	0.18	100%	0.18

Element Properties Used in Demand Calculations

Material	w	/eight
URM Wall Veneer	18.00	kN/m3
Timber Roof	0.40	kPa
Timber Floor	0.40	kPa
Floor Live Load	0.45	kPa
In Plane External Timber Frame	0.35	kPa
Glazing	0.25	kPa
Internal Timber Framing	0.25	kPa
Ext Timber Framing	0.35	kPa

Equivalent Static M	ethod	Bracing Type	Timber Bracing				
level i	G _i [kN]	Σψ _E Q _i	W _i [kN]	h _i [m]	Wihi	F _i [kN]	ΣF [kN]
2	0.0	0.0		8.48	#VALUE!	#VALUE!	#VALUE!
1	21.4	0.0	21.4	3.35	72	#VALUE!	#VALUE!
totals	21.4	0.0	21.4		#VALUE!	#VALUE!	#VALUE!
iolais	21.4	5.0	£1.4		#VALUE:	#VALUE:	#VALUE:

W Bracing Line Tributary Width	5.25	m
Building West Width	41.3	m
Building Length	13.3	m
Ground Floor Height	2.35	m
Sill Height	0.825	m
Ridge Height	5.7	m
E Bracing Line Tributary Width	2.05	m

East Wing

www.bmconsult.co.nz

Phone: (03) 443 4531

Alexandra Service Centre 1 Dunorling St

Alexandra Dunorling Street Block 1708-2227A Aug-23

WH

Subject:

East Wing Bracing Type: Timber Bracing with µ= 3.50 and C ₀ (T) = 0.18 g # Select Load Type Description Length (m) With (m) Depth/Height (m) Number of, # weight Units Element Weight (kN) Cd(T) Force (kN) (kN) (kN) (g) (kN) (kN) (g) (kN)	Height to COM (m)	1 Mome (kNm 0.0
Brain grayTimber Brain grayWind μ 3.50and $c_{\alpha}(1) =$ 0.18g f DescriptionDescriptionLength (m)Midth (m)Dept/Height (m)Number of μ gMultic (m)Multic (m)Mult		(kNm
# Select Load Type Description Length (m) Width (m) Depth/Height (m) Number of, # Weight Units Element Weight (kN) Cd(T) Force (kN) w1 Internal Timber Framing GL 4 In-plane 7.75 2.00 1.00 x 0.25 kPa 3.88 0.18 0.7 w3 w4 Ext Timber Framing IP link 0.60 1.18 1.00 x 0.35 kPa 0.2 0.18 0.0 w4 Ext Timber Framing IP link 0.60 1.18 1.00 x 0.25 kPa 0.2 0.18 0.0 w5 Glazing IP link 5.30 0.88 1.00 x 0.25 kPa 1.2 0.18 0.2		(kNm
w1 Internal Timber Framing GL 4 In-plane 7.75 2.00 1.00 x 0.25 kPa 3.88 0.18 0.7 w2 w3 w4 Ext Timber Framing IP link 0.60 1.18 1.00 x 0.25 kPa 3.88 0.18 0.7 w4 Ext Timber Framing IP link 0.60 1.18 1.00 x 0.35 kPa 0.2 0.18 0.0 w5 Glazing IP link 5.30 0.88 1.00 x 0.25 kPa 1.2 0.18 0.2	(III)	
w2 w3 L <thl< th=""> L <thl< th=""> <thl< th=""></thl<></thl<></thl<>		
w4 kt Timber Framing IP link 0.60 1.18 1.00 x 0.35 kPa 0.2 0.18 0.0 w5 Gazing IP link 5.30 0.88 1.00 x 0.25 kPa 1.2 0.18 0.2		1
ws Glazing IP link 5.30 0.88 1.00 x 0.25 kPa 1.2 0.18 0.2		
	1 1	0.0
we ₆ Ext Timber Framing IP link 5.30 0.30 1.00 x 0.35 kPa 0.6 0.18 0.1		0.0
		0.0
w ₇ Ext Timber Framing OoP Ext 0.80 1.18 1.00 x 0.35 kPa 0.3 0.18 0.1		0.0
w ₈ Glazing OoP Ext 3.30 0.88 1.00 x 0.25 kPa 0.7 0.18 0.1		0.0
w ₉ Ext Timber Framing OoP Ext 3.30 0.30 1.00 x 0.35 kPa 0.3 0.18 0.1		0.0
w11 Internal Timber Framing OoP 4.00 2.00 1.00 x 0.25 kPa 2.0 0.18 0.4 vv Internal Timber Framing 0.00 1.00 x 0.25 kPa 2.0 0.18 0.4		0.0
w12 Internal Timber Framing in-plane 0.00 2.00 1.00 x 0.25 kPa 0.0 0.18 0.0		0.0
W13 area 1 2.05 13.90 x 0.40 kPa 11.4 0.18 2.1		0.0
Main area 1 2.05 13.90 x 0.40 kPa 11.4 0.18 2.1 w1s Ext Timber Framing 2.05 1.00 1.00 x 0.35 kPa 0.7 0.18 0.1		0.0
wits 2.05 1.00 X 0.55 Kra 0.7 0.18 0.1 Wits 0.10 0.00 0.00 0.00 0.00 0.10 <td></td> <td>0.0</td>		0.0
W ₁₆ W ₁₇		
W ₁₇ W ₁₈		
W ₁₉		
W ₂₀		
W ₂₁		
W ₂₂		
W ₂₃		
w ₂₅		
W ₂₆		
W ₂₇		
W ₂₈		
W ₂₉		
W ₃₀		
W ₃₁		
w ₃₂		
W ₃₃		
East Wing Summary Timber Bracing - Ground Floor 3.8	0.0	0.0
Weight 21 kN Element Length Height Foundation type Capacity (kN/m) Capacity (kN)		
V* 3.8 kN EP1 2.00 2.70 Concrete 2.80 5.60 41aN		
Height to COM 0.0 m (Weighted Average)		
Bending Moment 0.0 kNm		
Total Capacity 5.6 kN		
Demand 3.8 kN		
100% %NBS (IL2)		

BATCHELAR					Alexandra Servic	e Centre	
R A MCDOUGALL					1 Dunorling St		
					Alexandra		
					Dunorling Street	Block	
Wanaka Office: Level 3, 99 Ardmore Street	Phone: (03) 443 4531	www.bmconsult.co.nz	www.bmconsult.co.nz		1708-2227A	Aug-23	WH
Subject:				Seismic Demand Calculations Gridline 5			

Material	μ	C _d (T)	NBS%	C _d (T) (Design)
Steel	1.25	0.37	100%	0.37
Timber Bracing	3.5	0.18	100%	0.18

Element Properties Used in Demand Calculations

Material	w	/eight
URM Wall Veneer	18.00	kN/m3
Timber Roof	0.40	kPa
Timber Floor	0.40	kPa
Floor Live Load	0.45	kPa
In Plane External Timber Frame	0.35	kPa
Glazing	0.25	kPa
Internal Timber Framing	0.25	kPa
Ext Timber Framing	0.35	kPa

Equivalent Static M	ethod	Bracing Type	Timber Bracing				
level i	G _i [kN]	Σψ _E Q _i	W _i [kN]	h i [m]	Wihi	F _i [kN]	ΣF [kN]
2	44.8	0.0	44.8	8.48	380	11.3	11.3
1	35.9	0.0	35.9	3.35	120	3.2	14.5
					504		
totals	80.8	0.0	80.8		501	14.5	14.5

W Bracing Line Tributary Width	5.25	m
Building West Width	41.3	m
Building Length	13.3	m
Ground Floor Height	2.35	m
Sill Height	0.825	m
Ridge Height	5.7	m
W Bracing Line Tributary Width	4.165	m

	T C H E LA R D O U G A L L N S U L T I N G UURAL & CIVIL ENGINEERS		_								1 Dunorling Alexandra Dunorling S	treet Block	1
aka Office: Level 3, 99 Ardmore S Subject:	treet	Phone: (03) 443 4531	www.bmconsult.co.nz		Seismic Deman	d Calculations Gridline 5	5 - West Wing				1708-22274	Aug-23	WH
West Wing Bracing Type:	Timber Bracing	with µ=	3.50	and $C_d(T) =$	0.18	g							
Select Load Type	Description	Length (m)	Width (m)	Depth/Height (m)	Number of, #		Weight	Units	Element Weight (kN)	Cd(T) (g)	Force (kN)	Height to COM (m)	Mome (kNn
Internal Timber Framing	GL 5 In-plane	3.20		1.18	0.85	x	0.25	kPa	0.80	0.18	0.1	(,	0.0
Ext Timber Framing	IP link	1.40		1.18	1.00	x	0.35	kPa	0.6	0.18	0.1		0.0
Glazing	IP link	10.40		0.88	1.00	x	0.25	kPa	2.3	0.18	0.4		0.0
Ext Timber Framing	IP link	10.40		0.30	1.00	x	0.35	kPa	1.1	0.18	0.2		0.0
Ext Timber Framing	OoP Ext	1.70		1.18	1.00	x	0.35	kPa	0.7	0.18	0.1		0.0
Glazing	OoP Ext	8.80		0.88	1.00	x	0.25	kPa	1.9	0.18	0.3		0.0
Ext Timber Framing	OoP Ext	8.80		0.30	1.00	x	0.35	kPa	0.9	0.18	0.2		0.0
Internal Timber Framing	OoP	13.13		2.00	0.85	x	0.25	kPa	5.6	0.18	1.0		0.0
Internal Timber Framing	in-plane	3.00		2.00	0.80	x	0.25	kPa	1.2	0.18	0.2		0.0
Timber Roof	area 1	5.25	13.30			x	0.40	kPa	27.9	0.18	5.0		0.
Ext Timber Framing	roof wall	5.25		1.00	1.00	x	0.35	kPa	1.8	0.18	0.3		0.
	•	•	•				•		45	F(kN) =	8.1	0.0	0
West Wing	Summary		Timber Bracing - Ground Flo				-		_				
Weight	45	kN	Element	Length		Foundation type	Capacity (kN/m)	Capacity (kN)					
V*	8.1	kN	EP1	3.20	2.40	Concrete	6.75	21.	60 5-1aS				
Height to COM	0.0 0.0	m (Weighted Average) kNm											
Donding Moment	0.0	KINITI											
Bending Moment													
Bending Moment													
Bending Moment									1				
Bending Moment													
Bending Moment													
Bending Moment													
Bending Moment							Tableau 'i						
Bending Moment							Total Capacity		L.6 kN				
Bending Moment							Total Capacity Demand		I.6 kN 3.1 kN %NBS (IL2)				

East Wing

Alexandra Service Centre

Dunorling Street Block 1708-2227A Aug-23 WH

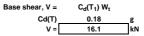
1 Dunorling St Alexandra

anaka Office: Level 3, 99 A Subject:

Phone: (03) 443 4531	www.bmconsult.co.nz

	East Wing	•												
	East Wing Bracing Type:	Timber Bracing	with μ=	3.50	and $C_d(T) =$	0.18	g							
#	Select Load Type	Description	Length (m)	Width (m)	Depth/Height (m)	Number of, #		Weight	Units	Element Weight (kN)	Cd(T) (g)	Force (kN)	Height to COM (m)	Moment (kNm)
W_1	Internal Timber Framing	GL 5 In-plane	4.20		2.00	1.00	x	0.25	kPa	2.10	0.18	0.4		0.0
w ₂														
W ₃														
	Ext Timber Framing	IP link IP link	0.00		1.18	1.00	x	0.35	kPa kPa	0.0	0.18	0.0		0.0
	Glazing Ext Timber Framing	IP link	5.90 5.90		0.88 0.30	1.00 1.00	x	0.25 0.35	кра	1.3 0.6	0.18 0.18	0.2 0.1		0.0 0.0
	Ext Timber Framing	OoP Ext	3.45		1.18	1.00	×	0.35	kPa	1.4	0.18	0.1		0.0
	Glazing	OoP Ext	4.88		0.88	1.00	x	0.25	kPa	1.1	0.18	0.2		0.0
	Ext Timber Framing	OoP Ext	4.88		0.30	1.00	x	0.35	kPa	0.5	0.18	0.1		0.0
w ₁₀	-											-		
	Internal Timber Framing	OoP	1.00		2.00	1.00	x	0.25	kPa	0.5	0.18	0.1		0.0
w ₁₂	Internal Timber Framing	in-plane	2.00		2.00	1.00	x	0.25	kPa	1.0	0.18	0.2		0.0
w ₁₃														
	Timber Roof	area 1	4.17	13.30			x	0.40	kPa	22.2	0.18	4.0		0.0
	Ext Timber Framing		4.17		1.00	1.00	x	0.35	kPa	1.5	0.18	0.3		0.0
w ₁₆		Link	5.93	1.60			x	0.40	kPa	3.8	0.18	0.7		0.0
W ₁₇														
w ₁₈														
w ₁₉ w ₂₀														
w ₂₀ w ₂₁														
w ₂₂														
w ₂₃														
w ₂₄														
w ₂₅														
w ₂₆														
W ₂₇														
w ₂₈														
w ₂₉														
w ₃₀														
w ₃₁														
W ₃₂														
W ₃₃										36	F(kN) =	6.5	0.0	0.0
	East Wing	Summary		Timber Bracing - Ground Fl										
	Weight V*	36 6.5	kN kN	Element EP1	Length 4.20	Height 2.70	Foundation type Concrete	Capacity (kN/m) 2.80	Capacity (kN)	5-1bN				
	Height to COM	0.0	m (Weighted Average)	LTI	4.20	2.70	concrete	2.80	11.70	2-1010				
	Bending Moment	0.0	kNm											
									L]				
								Total Capacity Demand	11.8 6.5	kN kN				
									4000/					

Seismic Demand Calculations Gridline 5 - East Wing


BATCHELAR					Alexandra Service	Centre	
R A A C D O U G A L					1 Dunorling St		
					Alexandra		
STRUCTURAL & CIVIL ENGINEERS					Dunorling Street E	lock	
Wanaka Office: Level 3, 99 Ardmore Street	Phone: (03) 443 4531	www.bmconsult.co.nz	www.bmconsult.co.nz		1708-2227A	Aug-23	WH
Subject:				Seismic Demand Calculations Gridline 7			

Material	μ	C _d (T)	NBS%	C _d (T) (Design)
Steel	1.25	0.37	100%	0.37
Timber Bracing	3.5	0.18	100%	0.18

Element Properties Used in Demand Calculations

Material	w	/eight
URM Wall Veneer	18.00	kN/m3
Timber Roof	0.40	kPa
Timber Floor	0.40	kPa
Floor Live Load	0.45	kPa
In Plane External Timber Frame	0.35	kPa
Glazing	0.25	kPa
Internal Timber Framing	0.25	kPa
Ext Timber Framing	0.35	kPa

Equivalent Static M	ethod	Bracing Type	Timber Bracing				
level i	G _i [kN]	Σψ _E Q _i	W _i [kN]	h i [m]	Wihi	F _i [kN]	ΣF [kN]
2	52.4	0.0	52.4	8.48	444	12.8	12.8
1	36.9	0.0	36.9	3.35	124	3.2	16.1
totals	89.3	0.0	89.3		568	16.1	16.1

Bracing Line Tributary Width	5.1	m
Building West Width	41.3	m
Building Length	13.3	m
Ground Floor Height	2.35	m
Sill Height	0.825	m
Ridge Height	5.7	m

	TCHELAR CDOUGALL DNSULTING										1 Dunorling Alexandra		
ka Office: Level 3, 99 Ardmore	ctural & civil engineers Street	Phone: (03) 443 4531	www.bmconsult.co.nz								Dunorling St 1708-2227A		W
Subject:		1 10101 (00) 110 1001			Seismic Demand	d Calculations Gridline 7	- West Wing				1,00 22277	105 25	
West Wing													
Bracing Type:	Timber Bracing	with µ=	3.50	and $C_d(T) =$	0.18	g							
Select Load Type	Description	Length (m)	Width (m)	Depth/Height (m)	Number of, #		Weight	Units	Element Weight (kN)	Cd(T) (g)	Force (kN)	Height to CON (m)	1 Mom (kNr
nternal Timber Framing	GL 7 In-plane	3.40		2.85	0.85	x	0.25	kPa	2.06	0.18	0.4	()	0.0
ext Timber Framing	OoP Ext	1.40		1.18	1.00	x	0.35	kPa	0.6	0.18	0.1		0.0
Glazing	OoP Ext	8.80		0.88	1.00	x	0.25	kPa	1.9	0.18	0.3		0.0
Ext Timber Framing	OoP Ext	8.80		0.30	1.00	x	0.35	kPa	0.9	0.18	0.2		0.
nternal Timber Framing	ОоР	20.40		2.85	0.85	x	0.25	kPa	12.4	0.18	2.2		0.
nternal Timber Framing	in-plane	10.95		2.00	0.80	x	0.25	kPa	4.4	0.18	0.8		0.
Timber Roof	area 1	5.10	13.90			x	0.40	kPa	28.4	0.18	5.1		0.
Ext Timber Framing	roof wall	5.10		1.00	1.00	x	0.35	kPa	1.8	0.18	0.3		0.
									52	F(kN) =	9.4	0.0	0.
West Wing	Summary		Timber Bracing - Ground Flo										
Weight V*		kN kN	Element GS2-N	Length 3.20		Foundation type Concrete	Capacity (kN/m) 4.25	Capacity (kN)) 7-1aS				
Height to COM		m (Weighted Average)	032-1	5.20	2.40	concrete	4.23	13.00	/ 1-105				
Bending Moment		kNm											
							Total Capacity		5 kN				
							Demand		kN				
								100%	%NBS (IL2)				

East Wing

www.bmconsult.co.nz

Phone: (03) 443 4531

Alexandra Service Centre 1 Dunorling St

Alexandra Dunorling Street Block

Aug-23

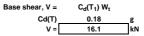
WH

1708-2227A

anaka Office: Level 3, 99 Ar/ Subject:

East Wing Bracing Type: with µ= 3.50 and $C_d(T) =$ 0.18 **Timber Bracing** g Cd(T) Height to COM Moment Element Weight Force # Width (m) Units Select Load Type Description Length (m) Depth/Height (m) Number of, # Weight (kN) (kN) (m) (kNm) (g) W_1 nternal Timber Framing GL 7 In-plane 3.70 2.00 1.00 х 0.25 kPa 1.85 0.18 0.3 0.0 **W**₂ W₃ W_4 W_5 w₆ w₇ Ext Timber Framing OoP Ext 3.00 1.18 1.00 0.35 kPa 1.2 0.18 0.2 0.0 х OoP Ext W_8 Glazing 7.20 0.88 1.00 0.25 kPa 1.6 0.18 0.3 0.0 х OoP Ext W₉ Ext Timber Framing 7.20 kPa 0.8 0.18 0.1 0.0 0.30 1.00 х 0.35 W₁₀ Internal Timber Framing OoP 1.70 2.00 1.00 0.25 kPa 0.9 0.18 0.2 0.0 W₁₁ х W_{12} Internal Timber Framing in-plane 2.00 1.00 0.25 kPa 0.5 0.18 0.1 0.0 х W₁₃ W₁₄ Timber Roof area 1 5.10 13.90 0.40 kPa 28.4 0.18 0.0 5.1 х w₁₅ Ext Timber Framing 5.10 1.00 1.00 0.35 kPa 1.8 0.18 0.3 0.0 х W₁₆ W₁₇ W₁₈ W₁₉ w₂₀ w₂₁ w₂₂ W₂₃ w₂₄ W₂₅ w₂₆ w₂₇ w₂₈ W₂₉ W₃₀ W₃₁ W₃₂ W₃₃ 37 F(kN) = 6.6 0.0 0.0 East Wing **Timber Bracing - Ground Floor** Summary Element Height Foundation type Capacity (kN/m) Capacity (kN) Weight 37 kN Length V* 6.6 kN GS2-N 10.36 7-1bN 2.80 3.70 2.70 Concrete Height to COM 0.0 m (Weighted Average) Bending Moment 0.0 kNm **Total Capacity** 10.4 kN 6.6 kN Demand 100% %NBS (IL2)

Seismic Demand Calculations Gridline 7 - East Wing


BATCHELAR					Alexandra Service	Centre	
R MCDOUGALL					1 Dunorling St		
					Alexandra		
					Dunorling Street E	llock	
Wanaka Office: Level 3, 99 Ardmore Street	Phone: (03) 443 4531	www.bmconsult.co.nz	www.bmconsult.co.nz		1708-2227A	Aug-23	WH
Subject:				Seismic Demand Calculations Gridline 8			

Material	μ	C _d (T)	NBS%	C _d (T) (Design)
Steel	1.25	0.37	100%	0.37
Timber Bracing	3.5	0.18	100%	0.18

Element Properties Used in Demand Calculations

Material	w	eight
URM Wall Veneer	18.00	kN/m3
Timber Roof	0.40	kPa
Timber Floor	0.40	kPa
Floor Live Load	0.45	kPa
In Plane External Timber Frame	0.35	kPa
Glazing	0.25	kPa
Internal Timber Framing	0.25	kPa
Ext Timber Framing	0.35	kPa

Equivalent Static M	ethod	Bracing Type	Timber Bracing				
level i	G _i [kN]	Σψ _E Q _i	W _i [kN]	h i [m]	Wihi	F _i [kN]	ΣF [kN]
2	47.7	0.0	47.7	8.48	405	12.3	12.3
1	41.8	0.0	41.8	3.35	140	3.8	16.1
totals	89.6	0.0	89.6		545	16.1	16.1

· · · · · · · · · · · · · · · · · · ·		
Bracing Line Tributary Width	4.74	m
Building West Width	41.3	m
Building Length	13.3	m
Ground Floor Height	2.35	m
Sill Height	0.825	m
Ridge Height	5.7	m

	TCHELAR Dougall NSulting										1 Dunorling Alexandra		
ka Office: Level 3, 99 Ardmore S	TURAL & CIVIL ENGINEERS treet	Phone: (03) 443 4531	www.bmconsult.co.nz								Dunorling St 1708-2227A		W
Subject:					Seismic Demand	d Calculations Gridline 8	- West Wing						
West Wing													
Bracing Type:	Timber Bracing	with μ=	3.50	and $C_d(T) =$	0.18	g		•					_
Select Load Type	Description	Length (m)	Width (m)	Depth/Height (m)	Number of, #		Weight	Units	Element Weight (kN)	Cd(T) (g)	Force (kN)	Height to COM (m)	1 Mom (kNr
nternal Timber Framing	GL 8 In-plane	3.40		2.85	0.85	x	0.25	kPa	2.06	0.18	0.4	(11)	0.0
	0.05.				1.00		0.05	1.5		0.40			
Ext Timber Framing	OoP Ext OoP Ext	4.00 6.48		1.18 0.88	1.00 1.00	x	0.35 0.25	kPa kPa	1.6 1.4	0.18 0.18	0.3 0.3		0.0
Glazing Ext Timber Framing	OOP Ext	6.48		0.88	1.00	x x	0.25	kPa kPa	1.4 0.7	0.18	0.3		0.
and a model i ronning		0.40		0.50	1.00	^	0.55	KF G	5.7	0.10	0.1		0.
nternal Timber Framing	ОоР	14.22		2.85	0.85	x	0.25	kPa	8.6	0.18	1.6		0.
nternal Timber Framing	in-plane	13.30		2.00	0.80	x	0.25	kPa	5.3	0.18	1.0		0.
Fimber Roof	area 1	4.74	13.90			x	0.40	kPa	26.4	0.18	4.7		0.
Ext Timber Framing	roof wall	4.74		1.00	1.00	x	0.35	kPa	1.7	0.18	0.3		0
									48	F(kN) =	8.6	0.0	0
West Wing	Summary		Timber Bracing - Ground Flo	or					48	F(KIN) =	8.0	0.0	0.
Weight	48	kN	Element	Length		Foundation type	Capacity (kN/m)	Capacity (kN)					
V*		kN	EP1	3.20	2.40	Concrete	6.75	21.60	0 8-1aS				
Height to COM Bending Moment		m (Weighted Average) kNm											
				1			Total Capacity	21.0	5 kN				
							Demand		5 kN				
								100%	%NBS (IL2)				

BM	BATCHELAR MCDOUGALL CONSULTING STRUCTURAL & CIVIL ENGINERS
Wanaka Office: Level	3. 99 Ardmore Street

East Wing

www.bmconsult.co.nz

Phone: (03) 443 4531

Alexandra Service Centre 1 Dunorling St

Alexandra Dunorling Street Block

Aug-23

WH

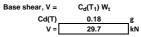
1708-2227A

/anaka Office: Level 3, 99 Ar Subject:

East Wing Bracing Type: with µ= 3.50 and $C_d(T) =$ 0.18 g **Timber Bracing** Element Weight Cd(T) Height to COM Moment Force # Select Load Type Width (m) Depth/Height (m) Units Description Length (m) Number of, # Weight (kN) (kN) (m) (kNm) (g) W_1 0.5 nternal Timber Framing GL 8 In-plane 3.70 2.85 1.00 х 0.25 kPa 2.64 0.18 0.0 W_2 W₃ W_4 W₅ w₆ w₇ Ext Timber Framing OoP Ext 9.48 0.30 1.00 0.35 kPa 1.0 0.18 0.2 0.0 х OoP Ext W_8 Glazing 9.48 0.88 1.00 0.25 kPa 2.1 0.18 0.4 0.0 х W₉ W₁₀ W₁₁ nternal Timber Framing OoP 5.80 2.85 1.00 0.25 kPa 4.1 0.18 0.7 0.0 х in-plane W_{12} Internal Timber Framing 5.60 2.85 1.00 0.25 kPa 4.0 0.18 0.7 0.0 х W₁₃ (w₁₄) Timber Roof area 1 4.74 13.90 0.40 kPa 26.4 0.18 4.7 0.0 х w₁₅ Ext Timber Framing roof wall 4.74 1.00 1.00 0.35 kPa 1.7 0.18 0.3 0.0 х W₁₆ w₁₇ W₁₈ w₁₉ w₂₀ w₂₁ w₂₂ w₂₃ w₂₄ W₂₅ w₂₆ w₂₇ w₂₈ W₂₉ w₃₀ W₃₁ w₃₂ W₃₃ 42 F(kN) = 7.5 0.0 0.0 East Wing **Timber Bracing - Ground Floor** Summary Weight 42 Element Length Height Foundation type Capacity (kN/m) Capacity (kN) kN V* 7.5 kN EP1 22.20 8-1bN Concrete 6.00 3.70 2.70 Height to COM 0.0 m (Weighted Average) Bending Moment 0.0 kNm **Total Capacity** 22.2 kN Demand 7.5 kN 100% %NBS (IL2)

Seismic Demand Calculations Gridline 8 - East Wing

BATCHELAR					Alexandra Service	Centre	
R MCDOUGALL					1 Dunorling St		
					Alexandra		
					Dunorling Street Bl	ock	
Wanaka Office: Level 3, 99 Ardmore Street	Phone: (03) 443 4531	www.bmconsult.co.nz	www.bmconsult.co.nz		1708-2227A	Aug-23	WH
Subject:				Seismic Demand Calculations Gridline 9			


Seismic Acceleration

Material	μ	C _d (T)	NBS%	C _d (T) (Design)
Steel	1.25	0.37	100%	0.37
Timber Bracing	3.5	0.18	100%	0.18

Element Properties Used in Demand Calculations

Material	w	/eight
URM Wall Veneer	18.00	kN/m3
Timber Roof	0.40	kPa
Timber Floor	0.40	kPa
Floor Live Load	0.45	kPa
In Plane External Timber Frame	0.35	kPa
Glazing	0.25	kPa
Internal Timber Framing	0.25	kPa
Ext Timber Framing	0.35	kPa

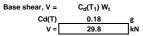
quivalent Static N	lethod	Bracing Type	Timber Bracing				
level i	G _i [kN]	Σψ _E Q _i	W _i [kN]	h i [m]	Wihi	F _i [kN]	ΣF [kN]
2	164.9	0.0	164.9	8.48	1399	#VALUE!	#VALUE!
1	0.0	0.0		3.35	#VALUE!	#VALUE!	#VALUE!
totals	164.9	0.0	164.9		#VALUE!	#VALUE!	#VALUE

Building Dimensions

Bracing Line Tributary Width	7.525	m
Building West Width	13.45	m
Building Length	38.3	m
Ground Floor Height	2.35	m
Sill Height	0.825	m
Ridge Height	5.7	m

\ ∧ / ('⊸мо	TCHELAR CDOUGALL NSULTING										Alexandra S 1 Dunorling Alexandra	ervice Centre St	
STRUC	CTURAL & CIVIL ENGINEERS	21 (22) 442 4524									Dunorling St		
ka Office: Level 3, 99 Ardmore 3 Subject:	Street	Phone: (03) 443 4531	www.bmconsult.co.nz		Seismic Demand	Calculations Gridline	9 - Ground Floor				1708-2227A	Aug-23	W
	•												
Ground Floor Bracing Type:	Tinch on Decision	with μ=	3.50	and $C_d(T) =$	0.18	a							
	Timber Bracing					g	14/-:	1 Juniter	Element Weight	Cd(T)	Force	Height to CON	Mom
Select Load Type	Description	Length (m)	Width (m)	Depth/Height (m)	Number of, #		Weight	Units	(kN)	(g)	(kN)	(m)	(kNr
nternal Timber Framing	GL 9 In-plane	14.22		2.85	0.85	x	0.25	kPa	8.61	0.18	1.6		0.0
Ext Timber Framing	GL 9 In-plane	4.10		1.18	1.00	x	0.35	kPa kPa	1.69	0.18	0.3		0.0
Glazing	GL 9 In-plane Low	13.28		0.88	1.00	×	0.25	KPd	2.91	0.18	0.5		0.0
Ext Timber Framing	OoP Ext	3.90		1.18	1.00	x	0.35	kPa	1.6	0.18	0.3		0.0
Glazing	OoP Ext	17.35		1.18	1.00	x	0.25	kPa	5.1	0.18	0.9		0.0
nternal Timber Framing	OoP	40.35		2.85	0.85	x	0.25	kPa	24.4	0.18	4.4		0.0
nternal Timber Framing	in-plane	26.90		2.00	0.85	x	0.25	kPa	11.4	0.18	2.1		0.
limber Roof	area 1	4.49	38.90			x	0.40	kPa	69.8	0.18	12.6		0.
limber Roof	Area 2 + 3	3.54	27.80			×	0.40	kPa	39.4	0.18	7.1		0.
		5.51	2,100			A	0.10		55.1	0.10	/.1		0.
									165	F(kN) =	29.7	0.0	0.
Ground Floor	Summary		Timber Bracing - Ground I	Floor					105	F(KIN) =	29.7	0.0	0.
Weight	165	kN	Element	Length	Height	Foundation type	Capacity (kN/m)	Capacity (kN)					
V* Height to COM	29.7 0.0	kN m (Weighted Average)	EP1 EP1	3.20 2.00	2.40 2.40	Concrete Concrete	6.7		9-1aS 9-1bS				
Bending Moment	0.0	kNm	Ex.Ply1	1.00		Concrete	6.5						
-			Ex.Ply1	1.00	2.40	Concrete	6.5	0 6.50	Ex				
			EP1 EP1	1.20 3.80	2.40	Concrete Concrete	6.7	5 8.10 5 25 45	9-2aN 9-2dN				
				3.80	2.40	concrete	0.7	23.03	2011				
			L	1		1	Total Capacity	81.9	」 ⊨ kN				
							Demand	29.7	kN				
								100%	%NBS (IL2)				

BATCHELAR					Alexandra Service	Centre	
R A A C D O U G A L					1 Dunorling St		
					Alexandra		
STRUCTURAL & CIVIL ENGINEERS					Dunorling Street B	lock	
Wanaka Office: Level 3, 99 Ardmore Street	Phone: (03) 443 4531	www.bmconsult.co.nz	www.bmconsult.co.nz		1708-2227A	Aug-23	WH
Subject:				Seismic Demand Calculations Gridline 11			


Seismic Acceleration

Material	μ	C _d (T)	NBS%	C _d (T) (Design)
Steel	1.25	0.37	100%	0.37
Timber Bracing	3.5	0.18	100%	0.18

Element Properties Used in Demand Calculations

Material	w	/eight
URM Wall Veneer	18.00	kN/m3
Timber Roof	0.40	kPa
Timber Floor	0.40	kPa
Floor Live Load	0.45	kPa
In Plane External Timber Frame	0.35	kPa
Glazing	0.25	kPa
Internal Timber Framing	0.25	kPa
Ext Timber Framing	0.35	kPa

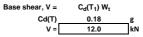
Equivalent Static M	lethod	Bracing Type	Timber Bracing				
level i	G _i [kN]	Σψ _E Q _i	W _i [kN]	h i [m]	Wihi	F _i [kN]	ΣF [kN]
2	165.8	0.0	165.8	8.48	1406	#VALUE!	#VALUE!
1	0.0	0.0		3.35	#VALUE!	#VALUE!	#VALUE!
4-4-4-	405.0		405.0		41/41 1151		41/411151
totals	165.8	0.0	165.8		#VALUE!	#VALUE!	#VALUE!

Building Dimensions

Bracing Line Tributary Width	4.485	m
Building West Width	13.45	n
Building Length	38.3	r
Ground Floor Height	2.35	r
Sill Height	0.825	ı
Ridge Height	5.7	1

) /		TCHELAR Dougall										Alexandra S 1 Dunorling	ervice Centre St	
M		NSULTING										Alexandra		
	STRUCT	TURAL & CIVIL ENGINEERS										Dunorling S		-
	: Level 3, 99 Ardmore St Subject:	treet	Phone: (03) 443 4531	www.bmconsult.co.nz		Seismic Demand	Calculations Gridline	1 - Ground Floor				1708-2227A	Aug-23	W
	Ground Floor					Seisinie Bernand								
	Bracing Type:	Timber Bracing	with µ=	3.50	and $C_d(T) =$	0.18	g					_		
S	Select Load Type	Description	Length (m)	Width (m)	Depth/Height (m)	Number of, #		Weight	Units	Element Weight (kN)	Cd(T) (g)	Force (kN)	Height to CON (m)	1 Mome (kNn
Internal Ti	imber Framing	GL 11 In-plane	25.05		2.53	0.80	x	0.25	kPa	12.65	0.18	2.3		0.0
Ext Timber	r Framing	GL 11 upper	29.90		2.10	0.80	x	0.35	kPa	17.58	0.18	3.2		0.0
URM Wall	Vanaar	Full Height	7.10	0.10	1.18		×	18.00	kN/m3	15.0	0.18	2.7		0.0
Ext Timber		OoP	6.20	0.10	1.18		×	0.35	kPa	2.5	0.18	0.5		0.0
Glazing		OoP	2.77		1.18		x	0.25	kPa	0.8	0.18	0.1		0.0
URM Wall	Veneer	Oop below sill	2.77	0.10	0.20		x	18.00	kN/m3	1.0	0.18	0.2		0.
										-				
Internal Tir	imber Framing	ОоР	34.60		2.53	0.85	x	0.25	kPa	18.6	0.18	3.3		0.
Internal Ti	imber Framing	in-plane	15.40		4.03		x	0.25	kPa	15.5	0.18	2.8		0.
Timber Ro			4.49	38.90			x	0.40	kPa	69.8	0.18	12.6		0.
imber Flo	oor		2.20	14.00			x	0.40	kPa	12.3	0.18	2.2		0
										16	5 F(kN) =	29.8	0.0	0.
	Ground Floor Weight	Summary 166	kN	Timber Bracing - Ground I Element	Length	Height	Foundation type	Capacity (kN/m)	Capacity (kN)					
	V*	29.8	kN	EP1	2.50	2.40		6.75		88 11-1a				
	Height to COM	0.0	m (Weighted Average)	EP1	2.10		Concrete	6.75		18 11-1b				
B	Bending Moment	0.0	kNm	Ex.Ply1 EP1	2.00 0.80	2.40	Concrete Concrete	6.50		00 11-1c 20 11-2a				
				EP1	1.95		Concrete	6.75	5 13.	16 11-2b				
				EP1	1.25	2.40	Concrete	6.75	5 8.	44 11-2c				
				EP1	1.20		Concrete	6.75	8.	10 11-2d				
				Ex.Ply1	3.00	2.40	Concrete	6.50 Total Capacity		50 11-3a 7.5 kN				
								Demand		9.8 kN				
									100%	%NBS (IL2)				
								Grid 12 Demand Total Demand		2.0 kN 1.9 kN	Transferred throu	ign cross brac	ing and hips	
									100%	%NBS (IL2)				

BATCHELAR					Alexandra Service	Centre	
R N MCDOUGALL					1 Dunorling St		
					Alexandra		
					Dunorling Street B	lock	
Wanaka Office: Level 3, 99 Ardmore Street	Phone: (03) 443 4531	www.bmconsult.co.nz	www.bmconsult.co.nz		1708-2227A	Aug-23	WH
Subject:				Seismic Demand Calculations Gridline 12			


Seismic Acceleration

Material	μ	C _d (T)	NBS%	C _d (T) (Design)
Steel	1.25	0.37	100%	0.37
Timber Bracing	3.5	0.18	100%	0.18

Element Properties Used in Demand Calculations

Material	w	/eight
URM Wall Veneer	18.00	kN/m3
Timber Roof	0.40	kPa
Timber Floor	0.40	kPa
Floor Live Load	0.45	kPa
In Plane External Timber Frame	0.35	kPa
Glazing	0.25	kPa
Internal Timber Framing	0.25	kPa
Ext Timber Framing	0.35	kPa

Equivalent Static N	lethod	Bracing Type	Timber Bracing				
level i	G _i [kN]	Σψ _E Q _i	W _i [kN]	h i [m]	Wihi	F _i [kN]	ΣF [kN]
2	66.9	0.0	66.9	8.48	567	#VALUE!	#VALUE!
1	0.0	0.0		3.35	#VALUE!	#VALUE!	#VALUE!
totals	66.9	0.0	66.9	1	#VALUE!	#VALUE!	#VALUE

Building Dimensions

Bracing Line Tributary Width	2.03	m
Building West Width	4.06	m
Building Length	38.3	m
Ground Floor Height	2.35	m
Sill Height	0.825	m
Ridge Height	5.7	m

3		ATCHELAR CDOUGALL DNSULTING CTUBAL & CIVIL ENGINEERS	Bhanay (02) 442 4524									1 Dunorling Alexandra Dunorling St	reet Block	WF
апакс	a Office: Level 3, 99 Ardmore . Subject:	Street	Phone: (03) 443 4531	www.bmconsult.co.nz		Seismic Demand	Calculations Gridline 1	2 - Ground Floor				1708-2227A	Aug-23	W
	Course of File and													
	Ground Floor Bracing Type:	Timber Bracing	with µ=	3.50	and C _d (T) =	0.18	g							
ŧ	Select Load Type	Description	Length (m)	Width (m)	Depth/Height (m)	Number of, #		Weight	Units	Element Weight (kN)	Cd(T) (g)	Force (kN)	Height to COM (m)	Mom (kNr
1 Int	ternal Timber Framing	GL 12 In-plane	14.76		0.20	1.00	x	0.25	kPa	0.74	0.18	0.1	(11)	0.
	RM Wall Veneer	GL 12 In-plane	14.76	0.10	0.30	1.00	x	18.00	kN/m3	7.97	0.18	1.4		0.
Gla	azing	GL 12 In-plane High	23.54		1.18	1.00	x	0.25	kPa	6.91	0.18	1.2		0.
Gla	azing	GL 12 In-plane Low	8.36		0.88	1.00	x	0.25	kPa	1.8	0.18	0.3		0.
Ext	t Timber Framing	GL 12 In-plane	6.40		0.88	1.00	x	0.35	kPa	2.0	0.18	0.4		0.
Gla	azing	OoP	4.06		0.88		x	0.25	kPa	0.9	0.18	0.2		0.
Ext	t Timber Framing	OoP	4.06		0.30		x	0.35	kPa	0.4	0.18	0.1		0.
)														
	ternal Timber Framing	ОоР	22.33		1.43	0.85	x	0.25	kPa	6.8	0.18	1.2		0.
2														
₃ ₄ Tir	mber Roof		2.53	38.90				0.40	kPa	39.4	0.18	7.1		0.
	IIIDEI KOOI		2.55	38.90			×	0.40	Krd	59.4	0.18	7.1		0.
7														
в														
9														
)														
2														
3														
l I														
5														
5														
											-4			
	Ground Floor	Summary		Timber Bracing - Ground Flo	or					67	F(kN) =	12.0	0.0	0.
	Weight	67	kN	Element		Height	Foundation type	Capacity (kN/m)	Capacity (kN)	1				
	V*	12.0	kN	Ex GIB 1 side & weatherboard	2.40	2.40	Concrete	1.3	3.12					
	Height to COM	0.0	m (Weighted Average)	Ex GIB 1 side & weatherboard	0.75	2.40	Concrete	1.3	0.98	3				
	Bending Moment	0.0	kNm											
				L			I	Total Capacity	4.1	L kN				
								Demand	12.0) kN				
									34%	%NBS (IL2)				

DA A	BATCHELAR MCDOUGALL C	CONSULTIN	G			
DIVI	Structural & Civil Engi	neers		Job No:	1708-2227	4
				By:	W Holt	Checked:
Job Name:	Alexandra Service Centre			Page:	1	of:
Subject:	Link Roof Diaphragm			Date:	4/08/23	
N/700000						
NZS3603 :1993	Plywood Diaphra	agm De	esign			
5.2	Shear Walls and Diaphrag					
5.2.2	Diaphragm Design Stren	gth				
	Plywood Grade	F8				
	Moisture Content	12	%	Less tha	n 15% is cor	nsidered dry timber
	t _{nom}	12	mm			
	No [#] Layers	5				
	No [#] of Sheets (Diaphragm)	1		Number	of sheets (1	or 2 sides of framing)
	Framing	2 Sides			oport framing	g conditions
	Top Sheet Grain	Parallel to	Long Edge			
5.2.4	Diaphragm Design Dimens	sions				
	В	2.6	т			n (perpendicular to chords)
	L	11.8	m	-		(Parallel to chords)
	W	1.65	kN/m	Line load	l on diaphra	gm
	V	9.735 1.2	kN m	lenath he	atween block	king parallel to L
	W	0.9	m	-		ing parallel to B
6.5.1.4	Diaphragm Panel Shear					
	φ	1		Typically	0.9 for plyw	rood
2.7	k ₁	1.0	Brief Load			ation Factor
6.3.8	k ₈	0.35		From ap	oendix G	
6.3.3	k ₁₄	1.00		• • •	reduction fa	actor
6.3.5	k ₁₅	1.0		See table		
6.3.7	k ₁₅ k ₁₈	0.89		000 1000	0.4	
6.2.1		4.2	MPa	Characte	eristic Shear	Stross
0.2.1	f _{ps}					
	t _{actual} d	12 2600	mm mm		ickness of p panel (= B)	anei
	ŭ	2000		Depth of	paner (– D)	
	V _{ni}	27.3	kN	12mm Pl	y on one fac	ce in the second se
	ϕV_{ni}	27.3	kN	ОК		
5.2.3	Fasteners					
	Туре	Nails				
	Size	3.15		Fastener	diameter	
4.2.2.2	Q _k	0.63	kN			
a) to e)	k	1.4		modificat	tion factor	
f)(i) & 4.3.2	Q _n	0.88	kN			
e) & C5.2.3.2	р	60	mm	minimum	nail/screw l	length to be compliant
5.2.4.1	Panel Nails					
	q*	3.74	kN/m			
	φQ _n	0.71	kN			near capacity
C5.2.3.2	S	100	mm	Spacing	of fasteners	
4000	No [#] Nails	118	nails			., # ., <i>.</i> ,
4.2.2.2 g)	k	1.3	1.61/		tion factor fo	r No″ Nails
	φQ _n /s	9.19	kN/m	OK		

BMC Job Name: Subject:	BATCHELAR McDOUGALL C Structural & Civil Engi Alexandra Service Centre Link Roof Diaphragm			Job No: By: Page: Date:	1708-2227 W Holt 2 4/08/23	A Checked: of:			
5.2.2	Wall Design Strength								
	Supported By	Plywood W	all	Diaphragm Supported by Plywood wall					
	Plywood Grade	F14							
	Moisture Content	12	%	Less than 15% is considered dry timber					
	t _{nom}	9	mm						
	No [#] Layers No [#] of Sheets (Wall)	3 2		N/A if dia	nhraam noi	t supported by plywood wall			
	No [#] diaphragms on wall	1				or both sides of wall			
	Framing	2 Sides		, ,		g conditions			
	Top Sheet Grain	Parallel to S	Short Edg						
5.2.4	Wall Design Dimensions								
	В	2 3	m			m (perpendicular to chords)			
	H V	9.735	m kN	Wall heig 1 diaphra		orted on wall			
	i i	0.6	m			king parallel to H			
	W	1.2	т	width bet	ween block	ing parallel to B			
6.5.1.4	Diaphragm Panel Shear								
	φ	0.9		Typically	0.9 for plyv	vood			
6.3.8	k ₈	0.11		From app					
6.3.3	k ₁₄	1.00			reduction fa	actor			
6.3.5	k ₁₅	1.0		See table	e 6.4				
6.3.7	k ₁₈	0.89							
6.2.1	f _{ps}	5.4	MPa		eristic Shear				
	t _{actual}	9	mm		ickness of p				
	d	2000	mm	Depth of	panel (= B)				
	V _{ni}	12.7	kN	9mm Ply	on one fac	e			
	ϕV_{ni}	11.4	kN	ОК					
5.2.3	Fasteners								
	Туре	Nails		- .					
1000	Size	3.15	1.61	Fastener	diameter				
4.2.2.2 a) to e)	Q _k k	0.63 1.40	kN	modificat	tion factor				
	R Q _n	0.88	kN	mounical	1011 140101				
f)(i) & 4.3.2 e) & C5.2.3.2	p	45	mm	minimum	nail/screw	length to be compliant			
5.2.4.1	Panel Nails	_							
0.2.7.1	q*	2.43	kN/m						
	φQ _n	0.71	kN	Individua	l fastener s	hear capacity			
C5.2.3.2	S	100	mm	Spacing	of fasteners	3			
	No [#] Nails	20	nails			#			
4.2.2.2 g)	k	1.1			tion factor fo	or No [#] Nails			
	φQ _n /s	7.80	kN/m	OK					

Job Name: Subject:	BATCHELAR McDOUGALL CO Structural & Civil Engined Alexandra Service Centre Link Roof Diaphragm			Job No: By: Page: Date:	1708-2227A W Holt Checked: 2 of: 4/08/23
5.2.5	Deflections				
		Diaphragm	Wall		
	a Timber Grade	2 SG8	0.5 SG8		
	Environment		Dry		
	Size	Dry Custom	Custom		
	Depth	90	90	mm	Depth of chord
4.2.2.3	Breadth	45	45	mm	Breadth of chord
-	Number	1	1		For built up members
	A	4050	4050	mm ²	Area of one chord
	e _n	0.14	0.06	mm	
	E	4400	4400	MPa	Elastic modulus of chord material
	G	455	455	MPa	Shear modulus of sheathing
	m	4.92	0.83		Number sheathing panels along chord
	W	19470	N °	Detetion	
	θ	0	rad	Rotation	at base of storey
	δ _c	0		Vortical r	novement of base at comp end of wall
			mm		-
	δ_t	0	mm	vertical n	novement of base at tension end of wall
	Δ_{hmax}	39.3	mm	L/300 allo	owable diaphragm deflection
	Δ_{wmax}	20	mm	H/150 all	owable wall deflection
	Δ ₁	6.92	mm	flexural o	leformation (Dependent on chords)
	Δ ₂	2.02	mm	shear de	formation of sheathing
	Δ_3	1.06	mm	deflectior	n due to nail slip
	Δ_4	0.00	mm	inter stor	ey deflection due to chord relaxation
	Δ_5	1.78	mm		ey deflection due to shear deformation
	Δ_6	0.15	mm		ey deflection due to nail slip
	Δ_7	2.46	тт		ey deflection as a cantilever
	Δ _h	10.00	mm	ОК	Diaphragm
	Δ _w	4.39	mm	OK	Wall
	₩	- 1.33		UN	

BM	()	McDOUGALL (ctural & Civil Engi			Job No: By:	1708-2227 <i>F</i> W Holt	A Checked:
Job Name: Subject:	Alexandra S Link Roof D	ervice Centre iaphragm			Page: Date:	2 0/01/00	of:
NZS3603 :1993	Timbe	r Chord [Design				
3.3	Chord Des Loads	ign	Diaphragm	Wall			
		N* _c N* _t	11.04548 11.04548	14.6025 14.6025	kN kN		
3.3.2	Effective L	ength					
		L _x	4.00	4.00	m	Strong axi	S
		k ₁₀	1.00	1.00	m		
		L _{eff x} L _y	0.00	0.00	m m	Weak axis	
		–y k ₁₀	1.00	1.00			
		L _{eff y}	0.00	0.00	m		
3.3.4	Design						
0.011	Design	k _{8x}	1.00	1.00		Stability ag	gainst lateral buckling
		k _{8y}	1.00	1.00			
		f _c	18	18	MPa		
		А	4050	4050	mm ²		
		ф	0.8	0.8		014	
		φΝ _{ncx} φΝ _{ncy}	58.32 58.32	58.32 58.32	kN kN	OK OK	
		Ψιν _{ncy}	30.32	00.02	NIN	UK	
3.4	Tension M	ember Design	l				
3.4.2		f _t	6.00	6.00			
		k ₄	1.00	1.00			
		φ	0.8	0.8			
		φN _{nt}	19.44	19.44	kN	OK	
	Final Design						
	Diaphragm: Sheething:		mm Ecoply, G	Grade F8 la	aid Paralle	I to Long Ed	ge with 1-Custom SG8
	Blocking:	Provide block the short (B)	-	m centres	along the	long (L) edg	ge and 900mm centres along
	Fixings:		e 3.15mm Nai of the panels a			-	nm spaced at 100mm around members
	<u>Walls:</u> Sheething:		nm Ecoply, Gi	rade F14 la	aid Paralle	el to Short Ed	dge with 1-Custom SG8
	Blocking:		king at 600mm izontal (B) edę		llong the v	vertical (H) e	dge and 1200mm centres
	Fixings:		e 3.15mm Nai of the panels a				nm spaced at 100mm around members

Appendix C – Geotechnical Desktop Report

association of consulting and engineering

Geotechnical Desktop Study

1 Dunorling Street Alexandra **Report prepared for:** Batchelar McDougall Consulting

Report prepared by: GeoSolve Limited

Distribution: Batchelar McDougall Consulting GeoSolve Limited (File)

March 2023 GeoSolve Ref: 230125

Revision	Issue Date	Purpose	Author	Reviewed
1	15/03/2023	Client issue	JMJ	FAW
2	16/03/2023	Client issue	JMJ	FAW

GEOTECHNICAL

PAVEMENTS

Table of Contents

1	Int	roduction1	I
	1.1	General1	I
	1.2	Scope of Work1	I
2	Sit	te Description2	2
	2.1	General	2
	2.2	Topography and Surface Drainage2	2
	2.3	Existing Building and Site History2	2
3	Ge	eotechnical Investigations2	2
4	Su	bsurface Conditions	3
	4.1	Geological Setting	3
	4.2	Inferred Stratigraphy	1
	4.3	Groundwater	5
5	En	gineering Considerations	5
	5.1	General	5
	5.2	Liquefaction Analysis	5
	5.2	2.1 Design Earthquakes	5
	5.2	2.2 Liquefaction Summary6	5
	5.3	Flood Stopbank Stability	7
	5.4	Geotechnical Parameters	7
	5.4	1.1 Existing Foundations	3
	5.4	1.2 Site Subsoil Category	}
	5.5	Summary	}
6	Co	nclusions and Recommendations10)
7	Ар	plicability10)

1 Introduction

1.1 General

This report presents the results of a geotechnical desktop study carried out by GeoSolve Ltd in order to determine likely subsoil conditions and provide preliminary geotechnical inputs for a structural assessment of 1 Dunorling Street, Alexandra.

Photo 1 – 1 Dunorling Street, Alexandra

The desktop study was carried out for Batchelar McDougall Consulting in accordance with GeoSolve Ltd's proposal dated 24 February 2023, which outlines the scope of work and conditions of engagement.

1.2 Scope of Work

We understand the site above is being structurally assessed by Batchelar McDougall Consulting and to assist the assessment a geotechnical desktop study is required, outlining:

- Review of the nearby geotechnical data to determine the likely ground conditions and groundwater level below the site;
- Preliminary review of liquefaction and settlement susceptibility;
- Preliminary slope stability review of the existing flood protection embankment;
- Bearing capacity and settlement curves for strip footings at the current ground level;
- Seismic soil classification.

EOTECHNICAL

PAVEMENTS

2 Site Description

2.1 General

The subject property is located in central Alexandra as shown in Figure 1 below and currently houses the Central Otago District Council and Oranga Tamariki offices.

It is possible to access around the entire building from Dunorling Street and State Highway 8.

2.2 Topography and Surface Drainage

The building is situated on sub-horizontal ground with contours falling slightly towards the southwest. A raised flood stopbank runs along the south-western site boundary, offset from the building by approximately 3 m at its closest point. The Clutha River is located approximately 70 m southwest of the building and is separated from the stopbank by a moderately sloping reserve area which has been earthworked into terraces. An existing pump station is located on the riverside side of the stopbank. GeoSolve understand this pump station is approximately 5.0 m deep. Earthworks to construct two storage tanks next to the pump station is currently underway and Geosolve understand these tanks will also be up to 5.0 m deep.

2.3 Existing Building and Site History

It is understood the current building originally comprised two separate buildings constructed in the late 1970's and mid 1980's respectively. A covered walkway was later retrofitted to connect the two buildings. Prior to the current building being constructed, historical aerial photographs from 1962 show two small buildings were located on the same location.

GeoSolve understands the flood stopbank was constructed in the early 2000's.

Structural plans provided to GeoSolve show the two buildings are founded on shallow foundations, which are typically 400–600 mm deep.

3 Geotechnical Investigations

No site specific investigations have been undertaken for the purpose of this report. GeoSolve has completed a review of shallow and deep site investigations in close proximity to the site in central Alexandra to infer the underlying geological model.

4 Subsurface Conditions

4.1 Geological Setting

The site is located within the Haast Schist belt which is regionally extensive across the province of Otago. The terrain in the Alexandra region is underlain by thick sequences of fluvio-glacial outwash alluvium of various ages. Over-consolidated Manuherikia Group lake sediments are present locally beneath the glacial outwash, and schist bedrock is present at varying depths. Higher terraces above the valley floor are occupied by older outwash gravels from former glacial periods. Layers of post glacial windblown silt and sand (loess) commonly blankets the ground surface.

Active fault traces were not observed onsite although the active Dunstan Fault Zone and Galloway Fault Zones are located in the immediate vicinity of Clyde and Alexandra. However, due to the estimated 5,000-10,000 year and 10,000-20,000 year average return periods for earthquakes on these fault zones respectively, the seismic risk posed by these structures is considered relatively low. Furthermore, these faults are not identified in NZS1170.5 as being major faults requiring near-fault factors for design.

The Alpine Fault, located approximately 130 km to the northwest, runs along the western foothills of the Southern Alps, and is likely to present a more significant seismic risk. There is a high probability that a major earthquake of Magnitude 8 or more will occur along the Alpine Fault within the next 50 years and such a rupture is likely to result in moderate ground shaking in the vicinity of Alexandra.

4.2 Inferred Stratigraphy

The inferred stratigraphy below has been extrapolated from site investigations carried out previously by GeoSolve comprising test pits and boreholes at locations shown in Figure 1 below.

Figure 1 – Aerial photo of Alexandra CBD showing previous site investigations locations marked by red squares carried out near the subject site (red outline). Source: Google Maps

Subsurface soils beneath the building are inferred to comprise:

- Uncontrolled fill/engineered fill, overlying;
- Loess, overlying;
- Outwash deposits, overlying;
- Schist Bedrock

Both surficial **uncontrolled fill and engineered fill** have been observed in surrounding site investigations. It is likely that uncontrolled fill exists below the surrounding pavements and landscaping areas, however it is assumed to have been removed from the building footprint areas during construction. It is unknown whether any engineered fill has been placed below the building or if the foundations are founded completely on natural ground. The uncontrolled fill was observed to generally comprise soft to very stiff SILT with sand and gravel, medium dense to dense SAND with cobbles and boulders, and medium dense sandy

GRAVEL with silt, cobbles and boulders. Rubbish including brick, plastic, steel and asphalt was also observed within the uncontrolled fill. Buried topsoil sometimes separated the uncontrolled fill and the natural soils below. The construction of the existing building predated any earthworks to form the flood stopbank.

Loess, typically comprising firm to stiff and loose to medium dense sandy SILT and silty SAND was observed in surrounding test pits to a maximum depth of 2.2 m below ground level (bgl). This wind blow material typically covers most of the Alexandra area.

Outwash deposits are inferred to underlie any fills and loess and comprise **outwash gravels** and **outwash sands** which are expected to be interbedded across the site. Outwash gravel, which constitutes the majority of this stratigraphic unit, typically comprises medium dense to dense sandy GRAVEL with silt, cobbles and boulders. Outwash sands typically comprise SAND with minor to trace gravel and silt.

The shallow outwash deposits observed in nearby test pits were logged as loose to dense while the deeper outwash deposits observed in nearby boreholes was logged as dense to very dense, established from standard penetration testing (SPT).

The **basement schist** which underlies the outwash deposits was not encountered in the nearby boreholes which extended to 15.45 m, however was encountered in one nearby test pit directly below the topsoil. Schist rock was also observed in a borehole 50 m northeast of the building. Schist rock outcrops are common in the surrounding area.

4.3 Groundwater

No groundwater seepage was observed in any of the nearby test pits. A piezometer approximately 100 m to the north of the subject building and at a similar relative level measured a static water level of 10.5 m bgl. A similar groundwater level is expected at the subject site.

5 Engineering Considerations

5.1 General

The recommendations and opinions contained in this report are based upon historical information held on the GeoSolve database. The nature and continuity of subsoil conditions is inferred and cannot be guaranteed.

5.2 Liquefaction Analysis

5.2.1 Design Earthquakes

Three earthquake scenarios have been assessed in accordance with NZS1170 – Structural Design Actions¹ for an Importance Level 4 structure with a 50-year design life. Peak

¹NZS1170-5 (2004) Structural Design Actions, Part 5: Earthquake Actions – New Zealand.

horizontal ground accelerations and effective magnitudes were calculated using the procedure from the NZGS/MBIE Module 1². Table 1 below summarises the scenarios considered.

The site is considered to be Class C (shallow soil site) in accordance with NZS 1170.5:2004 seismic provisions, based on the 18 m depth to schist bedrock in a borehole 50 m to the northeast.

Scenario	Performance Requirements	Annual Probability of Exceedance	Peak Horizontal Ground Acceleration (PGA)	Effective Magnitude
Serviceability Limit State (SLS)	Avoid damage that would prevent the structure being used as originally intended without repair	1/25	0.07 g	6.3
Serviceability Limit State (SLS2)	The structure maintains operational continuity	1/500	0.30 g	6.3
Ultimate Limit State (ULS)	Avoid collapse of the structural system	1/2500	0.53 g	6.3

Table 1 – Earthquake accelerations and effective magnitudes for liquefaction assessment

5.2.2 Liquefaction Summary

From the nearby investigations it is inferred that the site is underlain by shallow fill and/or loess overlying layers of medium dense to dense outwash deposits (SPTs N values of between 37-50 from 1.5 m to 15 m depth), which is typical in the Alexandra area. Groundwater is inferred to lie 10 m below the site.

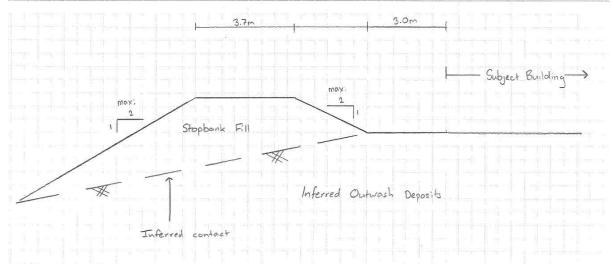
Analysis was undertaken on the nearby borehole SPT results using the Boulanger & Idriss (2014)³ deterministic method which incorporates a number of case histories from the 2010 and 2011 Christchurch earthquake events.

The liquefaction analysis indicates that no liquefaction is predicted for either of the SLS or ULS design earthquakes due to the density of the underlying soils and the depth to groundwater. The risk of lateral spreading is considered low due to unlikelihood of continuous liquefiable layers underlying the site and the inferred shallow gradient of the natural soils between the subject site and the Clutha River.

² NZGS/MBIE. (2021, November). *Module 1: Overview of the guidelines*. Retrieved from Building Performance: https://www.building.govt.nz/assets/Uploads/building-code-compliance/b-stability/b1-structure/geotechnicalguidelines/module-1-overview-of-earthquake-geotechnical-engineering-practice-guidelines-version-1.pd

³ Boulanger, R.W. & Idriss, I.M. (2014). CPT and SPT Based Liquefaction Triggering Procedures. Department of Civil & Environmental Engineering, University of California.

Additional site-specific ground investigations at the subject site will allow a more detailed liquefaction and lateral spread risk assessment.


5.3 Flood Stopbank Stability

The stopbank immediately southwest of the subject building was designed to protect properties from floodwaters of the Clutha River and is administered by the ORC.

No signs of existing slope instability, erosion or soil creep were observed on the stopbank at the time of this report.

No readily available information could be obtained on how the stopbank was constructed or the soil materials used but it is expected to overlie permeable outwash sand and gravel deposits.

The stopbank is offset from the building by approximately 3 m at its closest point. Figure 2 below shows the typical stopbank dimensions at this location and the inferred ground model below the stopbank.

Due to the inferred gently sloping natural ground below the stopbank fill, global slope instability is not considered a hazard to the subject building. As the stopbank fill is raised above the subject building, any slope instability, erosion or soil creep of the stopbank is unlikely to affect the building.

5.4 Geotechnical Parameters

Table 2 provides a summary of the typical geotechnical design parameters for the soil materials inferred to underlie the existing building.

Unit	Bulk density γ (kN/m³)	Effective cohesion c´ (kPa)	Effective friction ¢´ (deg)	Elastic modulus E (kPa)	Poissons ratio ע
Uncontrolled fill	17	N/A			
Loess (firm to stiff and loose to medium dense sandy SILT and silty SAND)	18	0	31	5,000- 10,000	0.3
Outwash sand (loose to medium dense, SAND with minor to trace gravel and silt)	18	0	32	5,000- 15,000	0.3
Outwash gravel (loose to dense, sandy GRAVEL with minor to trace cobbles and trace boulders, GRAVEL with some sand and trace/minor cobbles, sandy GRAVEL with some to trace silt to sandy GRAVEL)	20	0	36	20,000- 50,000+	0.3

Table 2 – Recommended geotechnical design parameters

5.4.1 Existing Foundations

A bearing capacity scenario has been calculated on the near surface loess soils as the existing building is founded on shallow foundations. Loess soils are expected to give a reduced bearing capacity in comparison to NZS 3604 "good ground" bearing capacity.

5.4.1.1 Shallow Foundations – Loess

Figure 3 below summarises typical working stresses for shallow footings, which bear upon loess soils. It should be noted the foundation working stresses presented on Figure 3 are governed by bearing capacity in the case of narrow footings and settlement in the case of wide footings.

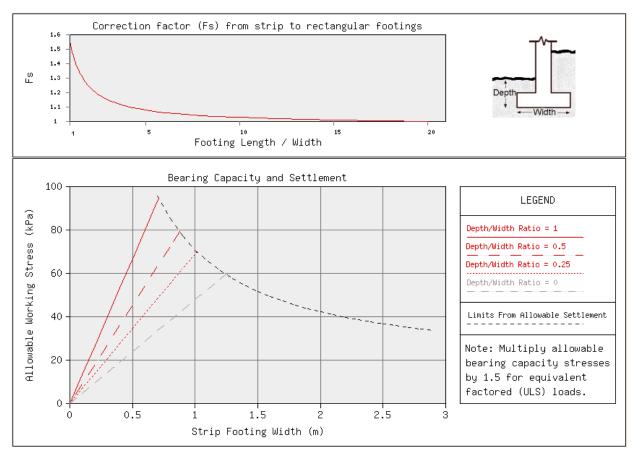


Figure 3 Recommended Bearing for Shallow Footings Founded on Loess Soils

As an example, from Figure 3 it can be seen an allowable working stress of 50 kPa is recommended for a 400 mm wide by 400 mm deep strip footing founded upon loess soils (using a depth to width ratio of 1). This corresponds to a factored (ULS) bearing capacity of approximately 75 kPa and an ultimate geotechnical bearing capacity of 150 kPa.

5.4.2 Site Subsoil Category

The site is inferred to be Class C (shallow soil site) in accordance with NZS 1170.5:2004 seismic provisions due to the depth to rock observed in a nearby borehole 50 m northeast of the building.

5.5 Summary

The subject site is considered a 'structurally dominated project' in accordance with MBIE Structural Assessment of Existing Buildings Section C4.

6 Conclusions and Recommendations

- Data held on the GeoSolve database infers the site is underlain by loess and outwash sand and gravel that extends to at least 15 m below existing ground level. The groundwater level was observed at 10 m depth in a neighbouring piezometer to the north.
- As the site has previously been developed, it is likely that localised pockets of uncontrolled fill will be present across the site. It is unknown if these were removed as part of the construction of the subject building.
- No liquefaction is predicted under SLS or ULS loading. This is due to the inferred depth to groundwater and the generally dense soils at depth based on site investigations from nearby sites.
- Based on site investigations from nearby sites and site observations, slope instability is not considered a risk to the existing building.
- Shallow footings bearing upon loess are expected to provide an allowable bearing capacity of 50 kPa for a 400 mm wide and 400 mm deep footing. This is significantly lower than NZS 3604's definition of "good ground".
- The seismic soil classification for the site is considered likely to be Class C (shallow soil site) in accordance with NZS 1170.5:2004 seismic provisions.
- The subject site is considered a 'structurally dominated project' in accordance with MBIE Structural Assessment of Existing Buildings Section C4.

7 Applicability

This report has been prepared for the benefit of Batchelar McDougall Consulting with respect to the particular brief given to us and it may not be relied upon in other contexts or for any other purpose without our prior review and agreement.

Report prepared by:

Jus

Jack Mynett-Johnson Engineering Geologist

Report reviewed and authorised by:

Fraser Wilson Senior Engineering Geologist